
The SPECIAL-K Personal Data Processing Transparency and

Compliance Platform

Sabrina Kirrane1, Javier D. Fernández1, Piero Bonatti2, Uros Milosevic3, Axel Polleres1,
and Rigo Wenning4

1Vienna University of Economics and Business, Austria
2Piero Bonatti

3Tenforce, Belgium
4W3C, Sophia-Antipolis, France

Dated: January 26, 2020

Abstract

The European General Data Protection Regulation (GDPR) brings new challenges for companies,
who must provide transparency with respect to personal data processing and sharing within and
between organisations. Additionally companies need to demonstrate that their systems and business
processes comply with usage constraints specified by data subjects. This paper first presents the
Linked Data ontologies and vocabularies developed within the SPECIAL EU H2020 project, which
can be used to represent data usage policies and data processing and sharing events, including
the consent provided by the data subject and subsequent changes to or revocation of said consent.
Following on from this, we propose a concrete transparency and compliance architecture, referred
to as SPECIAL-K, that can automatically verify that data processing and sharing complies with
the relevant usage control policies. Our evaluation, based on a new transparency and compliance
benchmark, shows the efficiency and scalability of the system with increasing number of events and
users, covering a wide range of real-world streaming and batch processing scenarios.

1 Introduction

The European General Data Protection Regulation (GDPR) defines a set of obligations for controllers
and processors of personal data. Primary obligations include obtaining explicit consent from the data
subject for the processing of personal data and providing full transparency with respect to processing
and sharing.

With the coming into effect of the GDPR in May 2018, several tools [11, 16, 19] have recently been
developed that can be used to assist companies to assess the compliance of their systems and processes
with respect to obligations set forth in the GDPR. However, such tools are targeted at self assessment
(i.e. companies complete standard questionnaires in the form of a privacy impact assessment) and cannot
be used to automatically check compliance with usage constraints.

Such, automated transparency and compliance mechanisms would require not only machine-readable
representations of the users consent, but also machine-readable representations of data processing and
sharing. SPECIAL1 is an EU H2020 research and innovation action, which addresses these challenges by
demonstrating how Semantic Web technologies can be used for both consent and personal data processing
representation and compliance checking.

In particular we devise a suite of ontologies and vocabularies that can be used to: (i) model data usage
policies, conforming the SPECIAL’s Usage Policy Language, (ii) represent data processing and sharing
events in a semantic log. Both of which have been developed in close collaboration with legal experts, thus
ensuring that our automated compliance checking is tightly coupled with the legal assessment process.

1https://www.specialprivacy.eu/

1

https://www.specialprivacy.eu/

The core data points required in order to automatically assess the legality of personal data processing
and sharing include: (i) the type of personal data collected from the data subject; (ii) the processing
performed on the personal data; (iii) for what purpose the data is processed; (iv) where the data are
stored and for what duration; and (v) if the data is shared who are the recipients. In addition, we propose
the SPECIAL-K architecture, a scalable solution that can be used to log personal data usage policies and
events in a manner that support automated compliance testing. In order to ensure a thorough evaluation
of our platform, and to support future comparative analysis, we propose the SPECIAL transparency and
compliance benchmark. Our evaluation on synthetic policies and events shows that SPECIAL-K scales
with increasing number of users both in a streaming and a batch scenario.

Summarising our contributions:

• we present the novel SPECIAL policy language to represent data usage policies, which can be used
to represent data subject’s consent in the context of GDPR. We provide an initial taxonomy for
the components of the policy (data categories, processing, etc.) for use in a variety of use cases
across multiple domains (e.g., finance, media, insurance, to name but a few), which can be further
extended for concrete use cases;

• we define the SPECIAL event log vocabulary, which is derived from the policy language. We show
how data processing and sharing events can be used to automatically check compliance with regard
to the data subjects policies;

• we present the SPECIAL-K Apache Kafka2 based big data platform, which is able to store logs at
large scale and to perform scalable compliance checking; and

• we propose a synthetic benchmark for transparency and compliance, referred to as STC-bench,
which is designed on the basis of well-identified choke points (challenges) that could affect the per-
formance of SPECIAL-K and similar systems. We make use of STC-bench to provide an evaluation
of SPECIAL-K on compliance tasks.

The remainder of the paper is structured as follows. Section 2 discusses alternative policy languages,
logging mechanisms and vocabularies, together with GDPR compliance tools. Section 3 motivates the
problem, presenting a use case scenario and the basic components of the SPECIAL architecture. We
present the SPECIAL policy language in Section 4 and the log vocabulary in Section 5. We present the
main components of the practical SPECIAL-K architecture for GDPR transparency and compliance in
Section 6. We define the STC-bench benchmark in Section 7 and subsequently present the results of the
performance evaluation of SPECIAL-K in Section 8. Finally, Section 9 concludes and discusses potential
avenues for future work.

2 State of the Art

When it comes to the representation of usage policies there are several potential candidates including
semantic policy languages [27, 12, 5, 13] and standard based policy languages [6, 10]. KAoS [27] is a
general policy language which adopts a pure ontological approach, whereas Rei [12] and Protune [5]
use ontologies to represent concepts, the relationships between these concepts and the evidence needed
to prove their truth, and rules to represent policies. Kolovski et al. [13] demonstrate how together
description logic and defeasible logic rules can be used to understand the effect and the consequence of sets
of access control policies. While, the Platform for Privacy Preferences (P3P)3, is a W3C recommendation,
which enables websites to express their privacy preferences in a machine readable format. An more
recent W3C recommendation known as the Open Digital Rights Language (ODRL)4, which was released
in February 2018, is a general rights language, which can be used to define rights to or to limit access to
digital resources. In principle any of these languages could be used to encode SPECIAL’s usage policies,
after the necessary auxiliary ontologies have been integrated. In SPECIAL we developed our usage policy
language using OWL2, and select language constructs carefully in order to achieve an optimal trade-off
between expressiveness and computational complexity.

2https://kafka.apache.org/
3P3P,http://www.w3.org/TR/P3P/
4ODRL,https://www.w3.org/TR/odrl-model/

2

https://kafka.apache.org/
http://www.w3.org/TR/P3P/
https://www.w3.org/TR/odrl-model/

As for transparency with respect to data processing, relevant work primarily relates to the re-
purposing of existing logging mechanisms as the basis for personal data processing transparency and
compliance [4]. Many of the works use a secret key signing scheme based on Message Authentication
Codes (MACs) together with a hashing algorithm to generate chains of log records that are in turn used
to ensure log confidentiality and integrity [2] (cf. [4] for a summary of existing approaches). MACs are
themselves symmetric keys that are generated and verified using collision-resistant secure cryptographic
hash functions. However, only a few works [22, 24] focused on personal data processing. Sackmann et
al [24] discussed how a secure logging system can be used for privacy-aware logging. Additionally, they
introduces the “privacy evidence” concept and discusses how such a log could be used to compare data
processing to the user’s privacy policy. [25] propose an ontology that can be used to model personal data
processing and demonstrate how SPARQL with limited RDFS reasoning can be used for query-based
privacy auditing. A distributed architecture to manage access to personal data based on blockchain tech-
nology has been proposed by Zyskind et al. [28]. The authors discuss how the blockchain data model
and Application Programming Interfaces (APIs) can be extended to keep track of both data and access
transactions. More recently, Sutton and Samavi [26] propose an extension of blockchain technology with
Linked Data to create tamper-proof audit logs and non-repudiation. Nonetheless, very little research has
been conducted into the suitability of such blockchain-based solutions in an industry context.

Additionally, just focusing on the representation, there exists a number of general event vocabularies
such as the Event5 ontology and the LODE 6 ontology [23] that could potentially be used to model
privacy-aware data processing events. However, these ontologies do not consider the particularities
and requirements (such as facilitating GDPR compliance) of the data processing and sharing events
considering herein. The management of events for business process compliance monitoring and process
mining [15] can be seen as orthogonal work.

As for GDPR compliance, recently the Information Commissioner’s Office (ICO) in the UK [11],
Microsoft [16], and Nymity [19] have developed compliance tools that enable companies to assess the
compliance of their applications and business processes by completing a predefined questionnaire. In
addition there has been a body of work looking at modelling GDPR concepts and obligations [20, 7], in
a manner that enables compliance checking beyond consent and transparency.

In this paper, we propose vocabularies that can be used to record both usage policies and data
processing and sharing events in a manner that supports automatic compliance checking. One of the
primary differentiators being that both our policy language and our event log have been derived from the
legal inquiry process used to assess if personal data processing and sharing complies with the GDPR.

3 Personal Data Processing

In order to set the basis of our approach, we first present a general use case scenario that exemplifies the
requirements derived from the SPECIAL pilots. Following on from this we provide a high level overview
of the SPECIAL consent, transparency, and compliance framework.

3.1 Motivating Use Case Scenario

Sue buys a wearable device for fitness tracking from a company called BeFit. During the set up, Sue
is presented with an informed consent request associated to a data usage policy. The policy says that,
in order to provide the tracking service, the device will record biomedical and location data, i.e. the
heart rate, duration and location of the fitness activities. These data will be stored in BeFit’s servers
in EU. BeFit additionally asks if these data can be used to create an activity profile that can be shared
with other companies for marketing purposes (e.g. ads related to fitness including some discount for
BeFit users). Sue accepts this option and starts using the device. The signed usage policy is stored in a
transparency ledger, together with all processing and sharing events generated from the use of the device
by Sue. Two years later, Sue is not using the device anymore and she starts receiving emails from a local
gym that advertises its activities. Sue can connect to the ledger and discover that (i) BeFit built her
profile by mining the data collected by the device, (ii) the profile, stating that she was not doing exercise
lately, was shared to the local gym, and (iii) all this was compliant with Sue’s data usage policy. At this

5Events, http://motools.sourceforge.net/event/event.html
6LODE, http://linkedevents.org/ontology/

3

http://motools.sourceforge.net/event/event.html
http://linkedevents.org/ontology/

Line of Business
Applications

Policies Log of
Events

Business Intelligence /
Data Science Application

BeFit Company

SPECIAL
Transparency and

 Compliance Dashboard

SPECIAL Middleware

Sue

SPECIAL
Consent

Management

Data

Purp
os

e

Proc
es

sin
g

Stor
ag

e

Rec
ipie

nts

Sue's policy

Figure 1: The SPECIAL Consent, Transparency and Compliance framework.

point, Sue can now decide to revoke the given consent and ask both BeFit and the gym to delete all of
her data. The information stored in the ledger points to the data she is referring to, hence all traces can
be automatically deleted.

3.2 Consent, Transparency and Compliance

The SPECIAL consent, transparency and compliance framework (shown in Figure 1) consists of two
primary components the: (i) SPECIAL Consent Management component, which is responsible for ob-
taining consent from the data subject and representing it in the form of a usage policy; and (ii) SPECIAL
Transparency and Compliance Component, which is responsible for presenting data processing and shar-
ing events in an easily digestible manner and demonstrating that existing data processing and sharing
complies with usage control policies.

SPECIAL Middleware includes sub-components that: connect the SPECIAL primary components
with existing Line of Business access control mechanisms and business logic; and middleware that enables
companies to perform policy aware business intelligence and data science.

In addition to existing data sources that support business operations (i.e. Line of Business Ap-
plications), and strategic decision making (i.e. Business Intelligence / Data Science Applications), we
propose two additional data sources, one which is used to store the consent, regulatory and business
Policies and another to store the data processing or sharing Events.

4

4 SPECIAL’s Usage Policy Language

SPECIAL usage policies are encoded in OWL 2 [17]. In the following we provide a highlevel overview of
the policy language. In the examples7 that follow, the spl prefix represents http://www.specialprivacy.

eu/langs/usage-policy#. Additional details, including the full grammar of policy expressions in Backus
normal form (BNF), can be found in the SPECIAL documentation [3].

4.1 Data Usage Policy Model

Conceptually, a usage policy is meant to specify a set of authorized operations. According to the GDPR,
these policies shall specify clearly which data are collected, what is the purpose of the collection, what
processing will be performed, and whether or not the data will be shared with others. Usage policies can
consist then of the following five elements:

• “Data” describes the personal data collected from the data subject. In order to describe which
categories of data are collected, an ontology of personal data is needed to cover the most common
data categories. It is envisaged that the ontology will be extended with suitable profiles and/or
integrated with further use case specific ontologies.

• “Processing” describes the operations that are performed on the personal data. Data processing
should be described through a suitable ontology of data operations.

• “Purpose” specifies the objective that is associated with data processing. Objectives such as mar-
keting, service optimisation and personalisation, scientific research, are pervasive across a variety
of contexts. Purpose descriptions are part of most usage policy languages developed so far (e.g.
P3P [6] and ODRL [10]).

• “Storage” specifies where data are stored and for how long. Note that the GDPR requires that
storage is strictly bound to the service needs. This implies storage minimisation, hence the need
to express upper bounds to storage duration, that may be expressed either in terms of the duration
of the service that the data have been collected for, or in absolute terms.

• “Recipients” specifies who is going to receive the results of data processing and, as a special
case, whom data are shared with. The GDPR does not clearly state to which level of detail this
information has to be specified, and there are potentially conflicting needs, such as the companies’
desire to keep some of their business relations confidential, and the data subjects’ right to trace
the flow of their personal information.

Table 1 provides a high level overview of the initial vocabularies that are necessary to represent the
elements of the MCM. All namespaces share the S which represents http://www.specialprivacy.eu/.
Note that these vocabularies have been developed to support the initial SPECIAL use cases. Further
terms will be added to accommodate additional use cases as needed.

For this purpose, SPECIAL setup the W3C Data Privacy Vocabularies and Controls Community
Group (DPVCG) in 2018. The group launched on the 25th of May 2018, the official start date of
the GDPR. The mission of the DPVCG is to develop a taxonomy of privacy terms, which include
in particular terms from the new European General Data Protection Regulation (GDPR), such as a
taxonomy of personal data as well as a classification of purposes (i.e., purposes for data collection), and
events of disclosures, consent, and processing such personal data. In 2019, the group published their first
versions of the Data Privacy Vocabulary8 and the DPVCG GDPR Legal Basis Vocabulary9. Additional
details can be found in [21].

7For the policy language examples we use the functional syntax which is less verbose.
8https://www.w3.org/ns/dpv
9https://www.w3.org/ns/dpv-gdpr

5

http://www.specialprivacy.eu/langs/usage-policy#
http://www.specialprivacy.eu/langs/usage-policy#

Table 1: SPECIAL auxiliary vocabularies for usage policies.

Category Namespace #Classes Examples Superclass
Data svd:=(S)/vocabs/data 27 svd:Activity, svd:Anonymized,

svd:Financial, svd:Health,
svd:Location, svd:Navigation,
svd:Preference, svd:Profile,
etc.

spl:AnyData

Processing svpr:=(S)/vocabs/processing 9 svpr:Aggregate, svpr:Analyze,
svpr:Anonymize, svpr:Collect,
svpr:Copy, svpr:Derive,
svpr:Move, svpr:Query,
svpr:Transfer

spl:AnyProcessing

Purpose svpu:=(S)/vocabs/purposes 31 svpu:Account, svpu:Arts,
svpu:Delivery, svpu:Education,
svpu:Feedback, svpu:Gaming,
svpu:Health,svpu:Marketing,
svpu:Payment, svpu:Search,
etc.

spl:AnyPurpose

Recipient svr:=(S)/vocabs/recipients 6 svr:Delivery,
svr:OtherRecipient,
svr:Ours, svr:Public, svr:Same,
svr:Unrelated

spl:AnyRecipient

Storage
location

svl:=(S)/vocabs/locations 7 svl:ControllerServer, svl:EU,
svl:EULike,
svl:ThirdCountries,
svl:OurServers,
svl:ProcessorServers,
svl:ThirdParty

spl:AnyLocation

Storage
duration

svdu:=(S)/vocabs/duration 4 svdu:BusinessPractices,
svdu:Indefinitely,
svdu:LegalRequirement,
svdu:StatedPurpose

spl:AnyDuration

4.2 Basic Usage Policies

A usage policy is composed of one or more basic usage policies, each of which is an OWL 2 expression
of the form:

ObjectIntersectionOf(

ObjectSomeValuesFrom(spl:hasData SomeDataCategory)
ObjectSomeValuesFrom(spl:hasProcessing SomeProcessing)
ObjectSomeValuesFrom(spl:hasPurpose SomePurpose)
ObjectSomeValuesFrom(spl:hasRecipient SomeRecipient)
ObjectSomeValuesFrom(spl:hasStorage SomeStorage)

)

(1)

The important parts in this expression are the policy’s attributes highlighted in bold. The policy author
needs to decide for each of them a suitable range, that in the above text is highlighted in italics. The
example presented authorizes all operations that:

1. fall within the specified SomeProcessing category,

2. operate only on data that belong to SomeDataCategory,

3. have any purpose covered by the SomePurpose category,

4. disclose the results to any member(s) of the SomeRecipient category, and

5. store the results in any place belonging to the SomeStorage category.

Therefore, policy (1) encodes the set of all authorizations that have (at least) the specified attributes,
which match the minimum core model (MCM), introduced in the previous section. Although SPE-
CIAL defines auxiliary vocabularies providing a set of classes for SomeDataCategory, SomeProcessing,
SomePurpose, SomeRecipient, it should be noted that it is not possible to enumerate over all possible
classes and as such the policy language and by extension the vocabularies were designed to be extensible.

4.3 General Usage Policies

A general usage policy may contain a union of any number of basic policies, each of them of the form (1).
The resulting policy is conceptually the union of all the authorizations supported by the basic policies,

6

that is, an operation is authorized by the general policy if and only if the operation is authorized by at
least one of its basic policies.

For instance, the following general usage policy states that personal data can only be used for non-
commercial purposes and shall neither be stored nor disclosed to third parties, while pseudonymised
data can be used freely (where auxiliary vocabularies define the terms PersonalData, NonCommercial,
PseudonymizedData):

ObjectUnionOf(
ObjectIntersectionOf(

ObjectSomeValuesFrom(spl:hasData PersonalData)
ObjectSomeValuesFrom(spl:hasProcessing spl:AnyProcessing)
ObjectSomeValuesFrom(spl:hasPurpose NonCommercial)
ObjectSomeValuesFrom(spl:hasRecipient spl:Null)
ObjectSomeValuesFrom(spl:hasStorage spl:Null)

)
ObjectIntersectionOf(

ObjectSomeValuesFrom(spl:hasData PseudonymizedData)
ObjectSomeValuesFrom(spl:hasProcessing spl:AnyProcessing)
ObjectSomeValuesFrom(spl:hasPurpose spl:AnyPurpose)
ObjectSomeValuesFrom(spl:hasRecipient spl:AnyRecipient)
ObjectSomeValuesFrom(spl:hasStorage spl:AnyStorage)

)
)

(2)

4.4 Use Case Specific Usage Policies

Taking the usecase scenario presented in Section 3, in Example 1 we demonstrate what Sue’s policy would
look like if it were represented in the SPECIAL policy language. In this example, the auxiliary vocabu-
laries need to be extended with three new classes: the class ex:HeartRate (as a subclass of svd:Health),
ex:Profiling (a subclass of svpr:Analyze) and ex:Recommendation (a subclass of svpu:Marketing).

Example 1. The following policy: “Heart rate and location data are collected and analysed to create
a user profile for the purpose of issuing recommendations. Profiles are stored indefinitely in the EU by
the data controller and released to third parties.” can be formalised as follows with a factorised general
policy:

ObjectIntersectionOf(
ObjectSomeValueFrom(spl:hasData

ObjectUnionOf(
ex:HeartRate svd:Location))

ObjectSomeValueFrom(spl:hasProcessing ex:Profiling)
ObjectSomeValueFrom(spl:hasPurpose ex:Recommendation)
ObjectSomeValueFrom(spl:hasStorage

ObjectIntersectionOf(
ObjectSomeValuesFrom(spl:hasLocation

ObjectIntersectionOf(svl:OurServers svl:EU))
DataSomeValuesFrom(spl:durationInDays

DatatypeRestriction(xsd:integer
xsd:mininclusive "0"^^xsd:integer))))

ObjectSomeValueFrom(spl:hasRecipient spl:AnyRecipient)
)

5 The SPECIAL Log Vocabulary

Hereinafter, we focus on providing a concrete model to represent logs of data processing and shar-
ing events, including the consent provided by the data subject and subsequent changes to or revoca-
tion of said consent. To do so, we provide the SPECIAL SPLog vocabulary10 that builds upon the
SPECIAL policy language ontology presented in Section 4 and reuses well-known vocabularies such as
PROV [14] to provide provenance metadata of the log. The namespace of the vocabulary, splog, is
http://www.specialprivacy.eu/langs/splog#.

10The full description of the SPLog vocabulary can be found at http://purl.org/specialprivacy/splog.

7

http://purl.org/specialprivacy/splog

Figure 2: Outline of the SPLog main terms and their relationships

5.1 Outline of the SPLog Vocabulary

We followed the large body of work in the Business Process Management (BPM) community that focuses
on using process execution events for business process compliance monitoring [15]. From this context, we
borrow the following: (i) we assume a log entry contains data related to a single process and events are
instantaneous, thus they can be associated to a single timestamp, (ii) we integrated an optional BPM
module in our model, in order to represent BPM information (i.e. cases, processes and activities) that
might be present in the company and can complement the logging information, and (iii) we integrated an
optional Immutable module to represent that a log entry can be additionally linked to its representation
as an immutable record, potentially stored in a different ledger or knowledge base (e.g. in blockchain).

Figure 2 depicts an overview of the vocabulary. Several concepts and properties have been defined to
cover the log and its entries, detailed below. The description of a policy log can be complemented with
the aforementioned optional conceptual modules (dashed), BPM and Immutable.

5.1.1 Log

A log (represented as splog:Log) is a collection of data that records data processing and sharing events as
well as consent-related activities (assertion and revocation). The log can contain (i) general log metadata
that describe the log as a whole, such as the data processor whose service is logged, modelled with the
splog:processor property (a subproperty of prov:agent), and (ii) log entries (splog:LogEntry), linked via
the splog:logEntry property (a prov:wasGeneratedBy subproperty).

8

5.1.2 Log entry

They contain information about processing and sharing events associated to data subjects, as well as
actions related to the consent provided (or revoked) by data subjects. These different types of entries
are represented with a hierarchy of classes, shown in Figure 2. Thus, a splog:LogEntry has two main
types (subclasses), splog:PolicyEntry and splog:DataEvent, described as follows:

• PolicyEntry: This class reflects log entries related to policies and consent. We currently con-
sider two subclasses, splog:ConsentAssertion specifying a consent provided by a data subject
to a splog:Controller (which in turn can be reachable via the splog:controller property), and
splog:ConsentRevocation, denoting the revocation of a given consent. Note that we assume that a
consent provided by a data subject replaces any previous consent, which can be optionally linked
via the splog:revoke property in our model.

• DataEvent: This class considers log entries that are actually events on the data, i.e., the aforemen-
tioned data processing and sharing events. In the case of the latter, the concrete splog:Recipient

instances can be specified, via splog:recipient.

Besides general metadata and a human-friendly message (splog:message), the data in a log entry can be
described as belonging to one of the following kinds:

• Data subjects: The log entry SHOULD reference the data subject(s) involved in the entry using
the splog:dataSubject property (a prov:wasAssociatedWith subproperty). Note that in case of
anonymised logs, no subject can be specified.

• Content: The log entry MUST reference the actual data of the log. This is specified with the
splog:logEntryContent property, which points to the appropriate instance of splog:LogEntryContent,
described below.

• Timestamps: The log entry MUST reference the (instant) time at which the event occurred using
the splog:validityTime property (subproperty of prov:atTime). The log entry SHOULD also reflect
the time in which the log was recorded, using splog:transactionTime (a dct:issued subproperty).

Optionally, the entry MAY reference a splog:InmutableRecord of its contents and the concrete BPM
splog:Activity and splog:Case involved in the process, if the company maintains this information.

5.1.3 Log entry content

The content, represented by the splog:LogEntryContent class, describes the actual data usage using the
minimum core model (i.e. data, processing, purpose, storage and recipients) defined in Section 4. This
way, event content and data policy authorisations are described with the same class formalization, which
facilitates compliance checking. Thus, the splog:LogEntryContent class definition MUST include the
MCM elements using the properties spl:hasData, spl:hasProcessing, spl:hasPurpose, spl:hasStorage,
spl:hasRecipient defined in the SPECIAL policy language.

Example 2. The following example provides a quick overview of how the SPECIAL Policy Log vocab-
ulary might be used to represent a log. We make use of our BeFit scenario: we assume (i) Sue is using a
wearable appliance for fitness tracking from BeFit, (ii) the application is tracking the location of Sue for
health purposes, (iii) a new location is stored in a particular database (called BeFitDatabaseEurope) and
reflected in the log (called BeFitLog). Let us also assume that the namespace for the BeFit company is
befit: (pointing to the appropriate IRI), being befit:Us the main reference of the company. We first
show the general log description in Listing 1.

Listing 1: Log description for BeFit devices

b e f i t : BeFitLog a sp log : Log ;
dct : t i t l e ”Log o f BeFitDatabaseEurope”@en ;
dct : d e s c r i p t i o n ”This conta in s events on BeFitDatabaseEurope

t rack ing dev i c e s geo−l o ca t ed in Europe”@en ;
dct : i s su ed ”2018−02−14”ˆˆxsd : date ;
prov : wasAttributedTo b e f i t : BeFitDatabaseEurope ;
sp log : p ro c e s s o r b e f i t : Us .

9

LogEntry

Log

splog:logEntry

LogEntryContent
splog:logEntryContent

owl:Thing

owl:Thing

owl:Thing

owl:Thing

spl:hasData

spl:hasProcessing

spl:hasPurpose

spl:hasStorage

DataSubject
splog:dataSubject

owl:Thing spl:hasRecipient

LogEntryGroup

xsd:dateTimeStamp

splog:validityStartTime

xsd:dateTimeStamp

splog:validityEndTime

splog:dataSubjectGroup

DataSubjectGroup splog:logEntryGroup

splog:dimension

splog:entryMember splog:subjectMember

Figure 3: Pictorial summary of log entry grouping

Then, we include a new entry in the log, which is a processing event (uniquely identified as befit:entry3918)
referencing a new tracking position of Sue, shown in Listing 2. We assume Sue’s unique identifier is
befit:Sue. The collection of the new position took place on the 3rd of January, 2018, at 13:20 (i.e.
validity time) and the event was recorded few seconds later (i.e. transaction time).

Listing 2: A new event for Sue’s BeFit device

b e f i t : BeFitLog sp log : logEntry b e f i t : entry3918 .

b e f i t : entry3918 a sp log : Process ingEvent ;
dct : t i t l e ” C o l l e c t i o n o f new dev i ce p o s i t i o n ”@en ;
sp log : dataSubject b e f i t : Sue ;
dct : d e s c r i p t i o n ”We c o l l e c t e d a new p o s i t i o n o f your BeFit

dev i ce in our database in Europe”@en ;
sp log : transact ionTime ”2018−01−10T13 : 2 0 : 5 0 Z”ˆˆ xsd : dateTimeStamp ;
sp log : va l id i tyTime ”2018−01−10T13 : 2 0 : 0 0 Z”ˆˆ xsd : dateTimeStamp ;
sp log : message ” Tracking p o s i t i o n by GPS . . . c o l l e c t e d ! ” ;
sp log : eventContent b e f i t : content3918 ;
sp log : inmutableRecord b e f i t : iRec3918 .

Note that the log entry befit:entry3918 is an instance of a ProcessingEvent, befit:iRec3918 links
the immutable version of the event, and befit:content3918 points to the actual content of the event,
defined in the following Listing 3.

Listing 3: The content of a new event for Sue’s BeFit device

b e f i t : content3918 a sp log : LogEntryContent ;
dct : d e s c r i p t i o n ” Locat ion data are c o l l e c t e d by a BeFit dev i ce

only f o r the hea l th purpose o f the s e r v i c e ”@en ;
sp l : hasData svd : Locat ion ;
sp l : hasProces s ing b e f i t : SensorGather ing ;
sp l : hasPurpose b e f i t : HealthTracking ;
sp l : hasStorage [has : l o c a t i o n s v l : OurServers] ;
s p l : hasRec ip i ent [a svr : Ours] .

b e f i t : SensorGather ing r d f s : subClassOf svpr : C o l l e c t .
b e f i t : HealthTracking r d f s : subClassOf svpu : Health .

5.2 Grouping Log Entries

Log entries can be grouped to facilitate scalability in those scenarios where there exists a continuous flow
of information, such as the envisioned big data applications. For instance, in our BeFit use case, a log

10

group could be used to represent (as a single entry) the collection of data during a running activity of a
data subject in BeFit.

SPECIAL provides such a grouping model, outlined in Figure 3. The core class is splog:LogEntryGroup
(a subclass of splog:LogEntry), which has a validity time interval denoted by the splog:validityStartTime

and splog:validityEndTime properties (subproperties of prov:startedAtTime and prov:endedAtTime, re-
spectively). The group MUST reference the content (data, purpose, processing, etc.) it groups via
the splog:dimension property (a splog:logEntryContent subproperty), which points to a particular
splog:LogEntryContent. The group MAY reference the data subject(s) in the group (all sharing the same
log entry content), using the property splog:dataSubjectGroup (prov:wasAssociatedWith subproperty).
This property points to a splog:DataSubjectGroup instance that groups all the data subject members in
the group via splog:subjectMember (a skos:member subproperty). Finally, the group MAY point to the
particular entries included in the group through the splog:entryMember property (a skos:member subprop-
erty). This option can facilitate a fine-grained traceability at the cost of storing additional information
(i.e. all log entries of the group), hence it is an optional feature.

Example 3. The following example in Listing 4 shows a log grouping the category of recommendations
given to Sue, John and Rose during a month.

Listing 4: A grouping example merging all recommendations given in a month

b e f i t : BeFitLog a sp log : Log ;
sp log : logEntryGroup b e f i t : recommendationsJanuary2018 .

b e f i t : recommendationsJanuary2018 a sp log : logEntryGroup
sp log : transact ionTime ”2018−02−01T00 : 0 5 : 0 0 Z”ˆˆ xsd : dateTimeStamp ;
sp log : va l id i tyTime ”2018−01−31T23 : 5 9 : 5 9 Z”ˆˆ xsd : dateTimeStamp ;
sp log : dataSubjectGroup b e f i t : bas icSubjectGroup ;
sp log : dimension b e f i t : templateOfferRecommendation .

b e f i t : bas icSubjectGroup sp log : member b e f i t : Sue , b e f i t : John , b e f i t : Rose .

b e f i t : templateOfferRecommendation a sp log : LogEntryContent ;
s p l : hasData b e f i t : OfferRecommendation ;
sp l : hasProces s ing b e f i t : MonthlyDataAnalysis ;
s p l : hasPurpose b e f i t : MonthlyOffersRecommendation ;
sp l : hasStorage [has : l o c a t i o n s v l : OurServers] ;
s p l : hasRec ip i ent [a svr : Ours] .

b e f i t : OfferRecommendation r d f s : subClassOf svd : Locat ion ;
r d f s : comment ”We recommended you an o f f e r at the end o f the month

based on the l o c a t i o n o f your dev i ce ” .

b e f i t : MonthlyDataAnalysis r d f s : subClassOf svpr : Analyze .
b e f i t : MonthlyOffersRecommendation r d f s : subClassOf b e f i t : RecommendationActivity .
b e f i t : RecommendationActivity r d f s : subClassOf svpu : Marketing .

6 SPECIAL Transparency and Compliance

First we provide an overview of SPECIAL compliance checking. Following on from this we provide a
high level overview of the SPECIAL system architecture.

6.1 Using SPECIAL Resources for Compliance Checking

Policies and log events are described in semantically unambiguous terms aligned to the same taxonomies
that are used to define usage policies, hence facilitating transparency and automatic compliance check-
ing. Regarding this latter, the usage policy enforced by a data controller contains the operations that
are permitted within the data controller’s organization. Therefore, the usage Uc attached to a SPECIAL
log entry complies with the usage policy Ps in the data subject’s consent if and only if all the autho-
rizations in Uc are also authorized by Ps, that is, Uc complies with Ps if and only if Uc ⊆ Ps. Thus,
in OWL 2 terminology, this amounts to checking whether the following axiom is entailed (implied) by
the combined ontology Ø containing the SPECIAL policy language ontology plus the aforementioned
auxiliary vocabularies: SubClassOf(U c P s). This is inherently supported by general inference engines for
OWL 2 (e.g. HermiT and FaCT++).

11

Figure 4: SPECIAL-K architecture setup for ex post compliance checking

For instance, the log entry in Example 2 specifies that there was a process of type befit:SensorGathering

on location data. This entry is compliant with a potential usage policy stating that the controller can
collect (svpr:Collect) location data iff befit:SensorGathering is a sublass of svpr:Collect.

In addition to the ex-ante compliance checking (based on event logs) described above, the SPECIAL
platform also caters for ex-post compliance checking (based on business rules) of existing Line of Business
and Business Intelligence / Data Science applications. In turn, the content of the SPECIAL events could
potentially be described at different granularities, from categorising the content in a simple taxonomy
stating the type of data, processing, etc., involved in the event, to the most fine-grained description
of the actual data associated to the event (e.g. concrete location of a data subject). We assumed the
log entries store categories (classes) such that compliance checking is based on the aforementioned class
subsumption. Thus, we consider that actual data can be stored, linked and retrieved from an alternative
data source.

6.2 The SPECIAL-K Architecture

One of the core technical objectives of SPECIAL is to implement consent, transparency and compliance
mechanisms for big data processing. The SPECIAL platform uses Semantic Web technology in order
to model the information that is necessary to automatically verify that data is processed according to
obligations set forth in the GDPR (i.e. usage policies, data processing and sharing events, and the
regulatory obligations). The SPECIAL platform consists of three primary components:

(i) The SPECIAL Consent Management Component is responsible for obtaining consent from the data
subject and representing it using the SPECIAL usage policy vocabulary (D2.5 Policy Language V2);

(ii) The SPECIAL Transparency Component is responsible for presenting data processing and sharing
events to the user in an easily digestible manner following the SPECIAL policy log vocabulary
(D2.7 Transparency Framework V2); and

(iii) The SPECIAL Compliance Component focuses on demonstrating that data processing and sharing
complies with usage control policies (D2.8 Transparency and Compliance Algorithms V2).

The SPECIAL system architecture is depicted in Figure 4. This paper specifically focuses on evalu-
ating the scalability and robustness of the SPECIAL transparency and compliance components.

12

Table 2: Transparency and compliance services.

Component Functionalities Current support in SPE-
CIAL platform (third re-
lease)

Transparency List the data processing and sharing events that happened Total
component Find data processing and sharing events by data subject, by con-

sent, by temporal window
Partial (temporal filter is not
supported)

Add data processing and data sharing events to the transparency
ledger

Total

Export the transparency data in an interoperable format Total
Compliance Coherency validation of transparency data and consent data Total
component Can be called by an access control system for ex-post and ex-ante

compliance checking
Total

Can process the transparency ledger for ex-post compliance check-
ing

Total

Get statistics for key parameters (#consents, #revocations,
#data sharing events, #data processing events ...)

Partial (supported for most pa-
rameters)

SPECIAL Transparency Component. Data processing and sharing event logs are stored in the
Kafka11 distributed streaming platform. A Kafka topic is used to store application logs, while a
separate compliance topic (called Compliance Log) is used to store the enriched log after compliance
checks have been completed. As logs can be serialised using JSON-LD, it is possible to benefit
from the faceting browsing capabilities of Elasticsearch12, and the out of the box visualisation
capabilities provided by Kibana.

Compliance Checker. The compliance checker, which currently includes an embedded HermiT13 rea-
soner uses the consent saved in MongoDB, together with the application logs provided by Kafka
to check that data processing and sharing complies with the relevant usage control policies. The
results of this check are saved onto a new Kafka topic.

To the best of our knowledge, no benchmark exists for the GDPR-based compliance and transparency
services such as the ones provided by the SPECIAL platform. However, the existence of such systems
and benchmarks is of utmost importance to identify shortcomings, optimise the performance and guide
future directions.

7 The SPECIAL Benchmark

In this section we present the choke points used to identify technical difficulties that the benchmark
should consider in order to challenge the system under test (our SPECIAL platform); provide details on
the benchmark data generation; and outline relevant key performance indicators (KPIs); and introduce
the STC benchmark tasks.

7.1 Choke Point-based Benchmark Design

We design STC-bench following the same methodology as most of the benchmarks under the H2020
HOBBIT project [18]. Thus, the development of the benchmark is driven by so-called “choke-points”, a
notion introduced by the Linked Data Benchmark Council (LDBC) [8, 1]. A choke-point analysis aims
to identify important technical challenges to be evaluated in terms of query workload. This methodology
depends on the identification of such workload by technical experts in the architecture of the system under
test. Thus, we analysed the SPECIAL platform with the technical experts involved in the SPECIAL
policy vocabulary, the transparency and the compliance components. Following this study, we identified
the following transparency and compliance choke points:

Transparency choke points.

CP1 - Concurrent access. The benchmark should test the ability of the system to efficiently handle
concurrent transparency requests as the number of users grows. This choke point mostly affects

11https://kafka.apache.org/
12https://www.elastic.co/products/elasticsearch
13http://www.hermit-reasoner.com/

13

scalability, performance, and responsiveness. On the one hand, the system must scale to cope with
the increasing flow of concurrent transparency requests. Ideally, the system can dynamically scale
based on the work load without interruptions, being transparent to users. On the other hand, the
performance and responsiveness (in particular, the latency of the responses) should be unaffected
irrespective of the number of users or, at worst, being affected marginally.

CP2 - Increasing data volume. The system should provide mechanisms to efficiently serve the trans-
parency needs of the users, even when the number of events in the system (i.e. consents, data
processing and sharing events) grows. In this case, in addition to the previous consideration on
scalability, performance and responsiveness, special attention must be paid to the storage require-
ments and the indexing mechanisms of the system, such that the accessing times do not significantly
depend on the existing data in the system (e.g. the number of events).

CP3 - Ingestion time in a streaming scenario. The benchmark should test that the transparency
needs are efficiently served in a streaming scenario, i.e. the user should be able to access the
information of an event (and the result of the compliance check) shortly after the event arrives to
the system. This choke point implies that no significant delays are introduced (i) by the compliance
checker, and, specifically (ii) by the ingestion of the event in the transparency system.

Compliance choke points.

CP4 - Different “complexities” of policies. In general, policies can be arbitrarily complex, affect-
ing the overall performance of any compliance checking process. Thus, the benchmark must consider
different complexities of policies, reflecting a realistic scenario.

CP5 - Increasing number of users. The benchmark should test the ability of the system to effi-
ciently scale and perform as increasing number of users, i.e. data processing and sharing events,
are managed.

CP6 - Expected passed/fail tests. In general, the benchmark must consider a realistic scenario
where policies are updated, some consents are revoked, and others are updated. The benchmark
should provide the means to validate whether the performance of the system depends on the ratio
of passed/fail tests in the work load.

CP7 - Data generation rates. The system should cope with consents and data processing and sharing
events generated with increasing rates, addressing the “velocity” requirements of most big data
scenarios.

CP8 - Performant streaming processing. The benchmark should be able to test the system in a
streaming scenario, where the compliance checking should fulfill the aforementioned requirements
of performance and responsiveness (latency).

CP9 - Performant batch processing. In addition to streaming, the system must deal with perfor-
mant compliance checking in batch mode.

7.2 Data Generation

In the following we present the STC-bench data generator to test the compliance and transparency
performance of the SPECIAL platform. The data generation considers two related concepts: the usage
policies and the data sharing and processing events that are potentially compliant with user consent.
When it comes to the policies, we distinguish three alternative strategies to generate pseudo random
policies:

(a) Generating policies in the PL fragment of OWL 2, disregarding the SPECIAL minimum core model
(MCM);

(b) Generating random policies that comply to the SPECIAL minimum core model (MCM);

(c) Generating not fully random (i.e. pilot oriented policies) subsets of the business policies.

14

Table 3: Transparency queries for the data subject and the data controller

ID User Query
Q1

Data subject

All events of the user
Q2 Percentage of events of the user passed
Q3 Percentage of events of the user failed
Q4 All events of the user passed
Q5 All events of the user failed
Q6 Last 100 events of the user
Q7 All events of the user from a particular application
Q8

Data controller

All events
Q9 Percentage of events passed
Q10 Percentage of events failed
Q11 All events passed
Q12 All events failed
Q13 Last 100 events
Q14 All events from a particular application

In this benchmark, we focus on the second alternative, providing a synthetic data generator following
the BeFit scenario. In addition, the classes in the policies and the log events can come from the standard
SPECIAL policy vocabulary, or can be extended with new terms from an ontology. At this stage, we
consider the SPECIAL policy vocabulary as the core input. The STC-bench data generator supports the
following configuration parameters:

• Generation rate: The rate at which the generator outputs events. This parameter understands
golang duration syntax eg: 1s or 10ms.

• Number of events: The total number of events that will be generated. When this parameters is
<= 0 it will create an infinite stream.

• Format: The serialisation format used to write the events (json or ttl).

• Type: The type of event to be generated: log, which stands for generating data sharing and
processing events, or consent, which generate new user consents.

• Number of policies: The maximum number of policies to be used in a single consent.

• Number of users: The number of UserID attribute values to generate.

7.3 Benchmark Tasks

In the following we present the set of concrete benchmark tasks for the SPECIAL compliance and
transparency components. We establish here a set of simple tasks to be performed by the SPECIAL
transparency component. The transparency tasks are illustrated in Table 4. In this case, the system
is aimed at resolving user and controller transparency queries. Further work is needed to identify the
expressivity of these queries. We consider a minimum subset of queries, described in Table 3.

In turn, Table 5 shows the tasks to be performed by the SPECIAL compliance component in order
to cover all choke points identified above. Each task delimits the different parameters involved, such
as the scenario (streaming or batch processing), the number of users, etc. These parameters follow the
choke points, and their values are estimated based on consultation with the SPECIAL pilot partners.
Note that all tests set a test time of 20 minutes, which delimits the number of events generated given
the number of users and event generation rate in each case.

7.4 Key Performance Indicators (KPIs)

In order to evaluate the ability of the SPECIAL platform to cope with the previously described tasks we
defined the following key performance indicators (KPIs):

• Compliance Latency: the amount of time between the point in which the compliance check of an
event was performed and the time when the event was received. In our case, we consider that the
compliance check is performed when the result is written to the appropriate Kafka topic storing
the results of the process.

15

Table 4: Transparency tasks, all referring to user and controller transparency queries

Task #Users Event Rate Policies #events Pass Ratio Choke Point

T-T2

100

none UNION of 5 p. 500M events Random CP1
1K
10K
100K
1M

T-T3 1000 none UNION of 5 p.

1M

Random CP2
50M
100M
1B
10B

T-T4 1000

1 ev./60s

UNION of 5 p. 500M events Random CP3
1 ev./30s
1 ev./10s
1 ev./s
10 ev./s

Table 5: Compliance tasks.

Task Subtask Scenario #Users Event Rate Policies Test Time Pass Ratio Choke Point

C-T1

C-T1-1

Streaming 1000 1 ev./10s

1 policy

20 minutes Random CP4,CP8
C-T1-2 UNION of 5 p.
C-T1-3 UNION of 10

p.
C-T1-4 UNION of 20

p.
C-T1-5 UNION of 30

p.

C-T2

C-T2-1

Streaming

100

1 ev./10s UNION of 5 p. 20 minutes Random CP5,CP8
C-T2-2 1K
C-T2-3 10K
C-T2-4 100K
C-T2-5 1M

C-T3

C-T3-1

Streaming 1000 1 ev./10s UNION of 5 p. 20 minutes

0%

CP6,CP8
C-T3-2 25%
C-T3-3 50%
C-T3-4 75%
C-T3-5 100%

C-T4

C-T4-1

Streaming 1000

1 ev./60s

UNION of 5 p. 20 minutes Random CP7,CP8
C-T4-2 1 ev./30s
C-T4-3 1 ev./10s
C-T4-4 1 ev./s
C-T4-5 10 ev./s

C-T5

C-T5-1

Batch

100

- UNION of 5 p.

100K events

Random CP9
C-T5-2 1K 1M events
C-T5-3 10K 10M events
C-T5-4 100K 100M events
C-T5-5 1M 1B events

• Compliance Throughput: The average number of events checked per second.

• Average transparency query execution: The average execution time for the query.

• CPU Usage by Node: The average CPU usage by nodes in the system.

• Memory Usage by Node: The average memory usage by nodes in the system.

• Disk Space: The total disk space used in the system.

8 Evaluation

The evaluation described in this section focuses on compliance, as it is the most data and processing
intensive task of the project, showing how STC-bench can be applied to measure the capabilities of
a particular installation of the SPECIAL platform. We start by describing a first analysis of scaling

16

Figure 5: Median and average latencies with increasing number of compliance checkers

the number of compliance checking processes. Following on from this we present the results on the
aforementioned STC-bench compliance tasks.

We report the averaged results of 3 independent executions. All experiments were executed on a
cluster consisting of 10 nodes. Although, it is expected that large-scale companies could provide more
computational resources, this installation (i) can serve many data-intensive scenarios as we will show in
the results, (ii) is meant to provide clear guidelines on the scalability of the platform, which can help to
plan future installations and evaluations. The characteristic of the cluster are the following:

• Number of Nodes: 10.

• CPUs: Each node consists of 4 CPUs per machine (2 cores per CPU).

• Memory: 16 GB per node.

• Disk Space: 100 GB per node.

• Operating System: CoreOS 2023.5.0 (Rhyolite).

• Replication Factor: 2. As mentioned this implies that data is written to 2 nodes, enhancing
fault-tolerance at the cost of additional space requirements and a minimum time overhead.

8.1 Scaling the Compliance Checking Process

Before delving into the concrete results on the STC-bench tasks, we present here a first study on the
scalability of the system with respect to the number of processes executing compliance checking.

Topics in Kafka are divided into partitions, which are the actual log structures persisted on disk.
The number of partitions establishes an upper limit to how far the processing of records can be scaled
out, given that a partition can only be assigned to a single consumer (in a consumer group). Thus, the
total number of partitions of the application log topic will decide how many instances of the compliance
checker can process the data in parallel. Given the available resources of the cluster, we decided to set
up 10 partitions, which puts an upper limit of 10 compliance checkers running in parallel. As a first
evaluation, we show how the system behaves with increasing compliance checkers running in parallel.
We perform the test in a streaming and batch processing scenario.

8.2 Streaming

For this scenario, we evaluate the streaming task C-T4-4 from STC-bench, shown in Table 5. Note that
the task considers a stream of 1,000 users, where each user generates 1 event every second. That is, we
evaluate an event stream that, on average, generates 1 event every 1ms, producing a total of 1,200,000

17

Figure 6: Latencies (in 95% percentile) with increasing number of compliance checkers (1, 5, 10 checkers)

Figure 7: Latencies (in 95%, 75% and 50% percentile) with increasing number of compliance checkers
(1, 10 checkers)

events. Given that we expect a performance on the level of ms per check, the streaming flow is close to
the limit of one compliance checker.

Figure 5 shows the median and average latency (in milliseconds, with logarithm scale) with different
number of compliance checkers in parallel, ranging from 1 to 10 (with 10 being the upper limit defined
by the number of partitions as explained above). Note that the median is usually preferred to the
average given that the latency distribution can be skewed. Results show that the (median) latency is
always at the level of milliseconds (in particular, less than 2.5 ms), with a noticeable improvement when
more compliance checkers are running in parallel, providing a stable latency of 1.5 ms. As expected, the
slightly higher average figures denote the expected skewed distribution.

Given this behaviour, we inspect the percentile latency, i.e, the value at which a certain percentage
of the data is included. Figure 6 represents (in milliseconds and logarithm scale) the latency at 95%
percentile, using 1, 5 or 10 parallel checkers. For instance, a value of ‘100’ ms means that 5% of the
events have a latency greater than or equal to ‘100’ ms. The distribution of 95% percentiles first shows
an initial warm-up effect, with higher latencies until the first 10,000 events. Then, the latencies are
stable with 1-2 ms in all cases, even at the high streaming rate of 1 event every ms. That is, in general,
only 5% of the events can experience latencies over 1-2 ms. As expected, latencies are slightly greater if
only 1 checker is used. It is worth noting that the evaluation uncovered a recurrent peak with 5 checkers
around 20,000 events, which is subject of future inspection.

Figure 7 completes this analysis, depicting 50, 75 and 95% percentiles for the extreme cases of having

18

Figure 8: CPU usage (in %) with increasing number of compliance checkers

Figure 9: Memory usage (in GB) with increasing number of compliance checkers

1 or 10 checkers in place. In this case, the 50 and 75 % percentiles are close to the 95%, which reflects
that most of the data is in the range of the 95% percentile.

In the following, we evaluate the CPU usage (in percentage) and memory usage (in GBs) with
increasing number of parallel compliance checkers (1, 5 and 10), shown in Figures 8 and 9 respectively.
We report the average and the maximum number. Results show that, thanks to latest improvements
in the third release of the platform, (i) memory usage increases sublinearly (and remains under 2 GBs)
as more parallel compliance checkers are running in parallel, and (ii) CPU consumption remains stable
around 50%, with no major influence of the number of checkers. Both results show that Kafka is able to
optimise the use of resources and to adapt to the number of parallel checkers. In addition, it is worth
mentioning that Kafka is able to add compliance checkers dynamically.

Overall, although different application scenarios can have highly demanding real-time requirements,
we expect that these figures, e.g. serving a 95% percentile latency of 1-2ms with an event stream of
1 event every 1ms, can cover a wide range of real-world scenarios. Recall that the limit of 10 parallel
compliance checkers is solely bounded to the number of partitions in the installation, which depends on
the resources of the cluster.

19

Figure 10: Total batch throughput (in events/s) by the compliance checker with increasing number of
compliance checkers

Figure 11: Distribution of batch throughput (in events/s) by the compliance checker with increasing
number of compliance checkers

8.3 Batch processing

As stated in choke point CP9, the system must also deal with performant compliance checking in batch.
Thus, we repeat the previous analysis looking at different number of compliance checkers for the case
of batch processing. To this aim, we evaluate the batch task C-T5-2 from STC-bench, shown in Table
5. This task considers 1,000,0000 events that are already loaded in the system. Given that we process
events in batch, we inspect the provided throughput (processed events per seconds) using an increasing
number of compliance checkers.

Figure 10 shows the total batch throughput (in events/s) for 1, 5 and 10 compliance checkers running
in parallel. Similarly to the streaming scenario, the performance is improved significantly as more
instances are running concurrently. In this case, we can observe a sublinear behaviour, where the
throughput ranges from 1796 events/s with 1 checker to 2523 events/s with 10. The difference between
5 and 10 checkers is negligible.

Figure 11 shows the distribution of batch throughput (in events/s) across time, for 1, 5 and 10
compliance checkers. Results are consistent with the throughput reported above, showing a general
constant behaviour and a better performance with 5 and 10 checkers running in parallel.

20

Figure 12: Median and average latencies with increasing complex policies

Figure 13: Latencies (in 95% percentile) with increasing complex policies

Table 6: Space requirements (MB) with increasing generation rate.

Users Event Rate (per user) # Events Disk Space (MB)
1,000 1 ev./60s 20,000 819
1,000 1 ev./30s 40,000 1,563
1,000 1 ev./10s 120,000 1,954
1,000 1 ev./1s 1,200,000 5,355
1,000 1 ev./100ms 12,000,000 59,664

8.4 Results on STC-bench Compliance Tasks

This section provides results on the STC-bench tasks, shown in Section 7. Rather than showing a
complete evaluation on an optimised and performant infrastructure, we focus on testing an installation
of the SPECIAL platform and pinpointing good spots for optimisation. We limit our scope to the
functionality provided by the current third release of the SPECIAL platform and the scaling capabilities
of the infrastructure. In the following we present the results for all the compliance tasks (C-T1 to C-T5
from Table 5). We disregard C-T3 as no significant differences were found in our tests and we opt for a
more realistic random generation of policies.

21

Figure 14: Median and average latencies with increasing number of users

Figure 15: Latencies (in 95% percentile) with increasing number of users

8.4.1 C-T1: Different Complexities of Policies

Recall that this task regards the behaviour of the system in a streaming scenario (at 1 event/10s per
user and 1K users) when different complexities of policies, measured as the number of union policies, are
considered. In this scenario, we make use of 1 compliance checker in order to isolate the performance of
one instance. We also compare the implementation of the Hermit reasoner with our engine PLReasoner.

Figure 12 shows the median and average latencies (in milliseconds) with 1, 10 and 30 union policies.
Results show that the median latency ranges between 1.5-5 ms, with relatively small differences as the
number of union policies grows, except for the union of 30 policies. In this case, the higher number of
union policies allows Hermit to quickly find a match (1.5 ms). As for the comparison of reasoners, Hermit
seems to slightly outperform PLReasoner in the scenario under test. Nonetheless, when both reasoners
are run in isolation, the tailored PLReasoner engine is several times faster than Hermit [9]. A first
analysis shows that different parsing and deserialisation of policies can affect the times of PLReasoner
in the SPECIAL platform. In addition, our isolated study generally considers richer and more complex
policies than STC-bench, also including different time intervals (for the duration of the storage).

Finally, the higher figures for the average latency again denote a skewed distribution. Thus, we
inspect the latency at 95% percentile (the value at which 95% of the data is included), depicted in
Figure 13 for 1, 10 and 30 policies. The distribution shows that, in all scenarios, the latency at 95%
percentile is stable after the warm-up, with small differences with more union policies. Results also show

22

Figure 16: Median and average latencies with increasing generation rates. The rate refers to events per
user, with 1K users

Figure 17: Latencies (in 95% percentile) with increasing generation rates. The rate refers to events per
user, with 1K users

that only 5% of the events can experience latencies over 5 ms.

8.4.2 C-T2: Increasing Number of Users

The second task in STC-bench focuses on evaluating the scalability of the system with increasing number
of users, from 100 to 1 million. These users are considered to be generating events in parallel, each of
them at a rate of 1 event every 10 seconds. In the following evaluation, we study the first four subtasks,
covering up to 100,000 users given the characteristics of the experimental infrastructure. Note that
serving 100,000 users at the aforementioned rate already implies to manage a stream of 10,000 events
every second. In this scenario, we consider 10 compliance checkers running in parallel in order to cope
with such demand. As mentioned above, we expect that this evaluation can serve as a baseline to shed
light on the potential of the SPECIAL platform, guiding our current efforts.

Figure 14 shows the median and average latencies for 100-100,000 users. Results show that the system
is able to provide a median latency of less than 1ms with 1,000 users (each user with 1 event every 10
seconds, hence overall the system receives 1 event every 10 ms simultaneously), and 1.6ms with 10,000
users (overall, 1 event very ms). However, with 100,000 users, the current infrastructure needs to manage

23

Figure 18: CPU usage (in %) for compliance checking with increasing generation rate (1K users)

1 event every 0.1ms (less than the checking time of 1ms), which causes delays of several seconds.
In order to highlight potential worst-case scenarios, we represent the latency at 95% percentile in

Figure 15. Note that an increasing number of users results in more events, hence the different number of
events in each scenario. As expected, results show two different scenarios. On the one hand, a number
of users between 100-10,000 results in a 95% percentile around 1 ms, with an initial warm-up step that
produces higher latencies. On the other hand, a higher number of users (100,000) leads to increasing
latencies as the number of events grows, i.e. events are queued for several seconds. The main reason
is that the number of compliance checkers (10, given the amount of computational resources in the
cluster) cannot cope with the overall actual ratio of 10,000 events every second. Given that Kafka is
able to optimise and adapt to the number of parallel checkers, which is solely limited by the number of
partitions in the cluster, hence a more powerful infrastructure could cope with a greater number of users.

8.4.3 C-T4: Increasing Data Generation Rates

This task evaluates the performance of the system with increasing streaming rates. We consider 10
compliance checkers running in parallel in order to try to cope with the biggest rates in the defined
tasks.

Figure 16 represents the median and average latencies (in milliseconds and logarithm scale), while
the latency at 95% percentile is shown in Figure 17 (in logarithm scale). Several comments are in
order. First, note that the median values in Figure 16 are consistent with our previous latency measures,
obtaining values between 1-2ms for rates up to 1 ev/s (per user). Then, as expected, the median latency
increases up to several seconds at the highest rate of 1 ev/100ms per user, that is, the system receives a
total of 1 ev/0.1ms.

The huge skewed distribution for the highest rate is revealed by the 95% percentile shown in Figure
17. Note that we fix the benchmark time at 20 minutes, so more events are generated with increasing
generation rates. Results shows that, the latency reaches a stable stage for rates up to 1 ev/1s per user,
i.e. a total of 1 ev/1ms. In contrast, the latency at 95% percentile grows steadily for streams at 1
ev/100ms per user. This fact shows that the current installation cannot cope with such high rates and
new events have to queue until they can be processed. The maximum latency reaches 17 minutes for 12
million events.

Finally, in this case, we also inspect the CPU usage and the overall disk space of the solution. The
CPU usage (in percentage) is represented in Figure 18. As expected, the results show that the CPU
usage increases (but sublinearly) with the generation ratio. The disk space requirements are given in
Table 6. It is worth mentioning that the disk space depends on multiple factors, such as the individual
size of the randomly generated events, the aforementioned level of replication, the number of nodes and
the level of logging/monitoring in the system. The reported results already show the log compaction
feature of Kafka as, on average, less bytes are required to represent each of the events with increasing

24

Figure 19: Total batch compliance checking throughput (in events/s) with increasing number of com-
pliance checkers

Figure 20: Distribution of batch compliance checking throughput (in events/s) with different users and
work load. We consider 1000 events per user

event rates.

8.4.4 C-T5: Batch Performance

Recall that this task considers a batch processing scenario, i.e. events are already loaded in the system,
with increasing number of events and users. In this evaluation, we consider the first three subtasks,
testing up to 10 million events14 (considering 100K events per user). We inspect the provided throughput
(processed events per seconds) using an increasing number of compliance checkers. As in previous cases,
we here consider 10 compliance checkers running in parallel.

Figure 19 shows the total batch throughput (in events/s) for 100K, 1M and 10M events. The total
throughput increases with the number of events, being over 474 processed events/s in all cases, with a
maximum of 3,489 events/s in the case of 10M events.

Finally, Figure 20 looks at the distribution of the throughput for the case of 1M and 10M events.
Both cases shows similar initial figures, with increased performance around 4M events.

14Note that the system is able to generate and process an arbitrary number of events in batch. Further results can be
found in our companion website.

25

9 Conclusions

In this paper we introduced the initial suite of ontologies and vocabularies, developed within the SPE-
CIAL project, that can be used by companies to record usage policies and data processing and sharing
events in the manner that enables the compliance of existing Line of Business and Business Intelligence
applications to be checked automatically. In addition to providing an overview of the resources and how
they fit into the SPECIAL consent, transparency and compliance architecture, we also described how our
the SPECIAL-K Apache Kafka based big data platform can be used for automatic compliance checking.
We also proposed a synthetic benchmark for transparency and compliance, referred to as STC-bench,
which is designed on the basis of well-identified choke points (challenges) that could affect the perfor-
mance of SPECIAL-K and similar systems. Finally, we used STC-bench to evaluate the SPECIAL-K
compliance checking, using synthesised data.

Future work includes refining the vocabularies based on additional use cases and demonstrating their
effectiveness in various business settings.

Acknowledgments

Supported by the European Union’s Horizon 2020 research and innovation programme under grant
731601 and the Austrian Research Promotion Agency (FFG): grant 861213 (CitySpin). The authors are
grateful to all of SPECIAL’s partners; without their contribution this project and its results would not
have been possible.

References

[1] Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundulaki, Thomas Neumann, Orri Erling,
Peter Neubauer, Norbert Martinez-Bazan, Venelin Kotsev, and Ioan Toma. The linked data bench-
mark council: a graph and rdf industry benchmarking effort. ACM SIGMOD Record, 43(1):27–31,
2014.

[2] Mihir Bellare and Bennet Yee. Forward integrity for secure audit logs. Technical report, Computer
Science and Engineering Department, University of California at San Diego, 1997.

[3] P.A. Bonatti, S. Kirrane, I. Petrova, L. Sauro, and E. Schlehahn. Special deliverable 2.5: Policy
language v2, 2018.

[4] Piero Bonatti, Sabrina Kirrane, Axel Polleres, and Rigo Wenning. Transparent personal data pro-
cessing: The road ahead. In International Conference on Computer Safety, Reliability, and Security,
pages 337–349. Springer, 2017.

[5] Piero A. Bonatti, Juri Luca De Coi, Daniel Olmedilla, and Luigi Sauro. A rule-based trust negoti-
ation system. IEEE Trans. Knowl. Data Eng., 22(11):1507–1520, 2010.

[6] Lorrie Faith Cranor. Web privacy with P3P - the platform for privacy preferences. O’Reilly, 2002.

[7] Marina De Vos, Sabrina Kirrane, Julian Padget, and Ken Satoh. Odrl policy modelling and compli-
ance checking. In International Joint Conference on Rules and Reasoning, pages 36–51. Springer,
2019.

[8] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat, Minh-
Duc Pham, and Peter Boncz. The ldbc social network benchmark: Interactive workload. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data, pages 619–630.
ACM, 2015.

[9] Javier D. Fernández, P.A. Bonatti, U. Milosevic, and Jonathan Langens. Special deliverable 3.5:
Scalability and robustness testing report v2, 2018.

[10] Renato Iannella and Serena Villata. Odrl information model 2.2. W3C Recommendation, 2018.

26

[11] Information Commissioner’s Office (ICO) UK. Getting ready for the GDPR, 2017.

[12] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for a pervasive computing environ-
ment. In Proceedings POLICY 2003. IEEE 4th International Workshop on Policies for Distributed
Systems and Networks, pages 63–74. IEEE, 2003.

[13] Vladimir Kolovski, James Hendler, and Bijan Parsia. Analyzing web access control policies. In
Proceedings of the 16th international conference on World Wide Web, pages 677–686, 2007.

[14] T. Lebo, S. Sahoo, and D. McGuinness. Prov-o: The prov ontology. W3C Recommendation, April,
2013.

[15] Linh Thao Ly, Fabrizio Maria Maggi, Marco Montali, Stefanie Rinderle-Ma, and Wil MP van der
Aalst. Compliance monitoring in business processes: Functionalities, application, and tool-support.
Information systems, 54:209–234, 2015.

[16] Microsoft Trust Center. Detailed GDPR Assessment, 2017.

[17] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology Language – Struc-
tural Specification and Functional-Style Syntax (Second Edition). W3C Recommendation, 2012.

[18] Axel-Cyrille Ngonga Ngomo and Michael Röder. Hobbit: Holistic benchmarking for big linked data.
ERCIM News, 2016(105), 2016.

[19] Nymity. GDPR Compliance Toolkit.

[20] Harshvardhan J Pandit, Kaniz Fatema, Declan O’Sullivan, and Dave Lewis. Gdprtext-gdpr as a
linked data resource. In European Semantic Web Conference, pages 481–495. Springer, 2018.

[21] Harshvardhan J Pandit, Axel Polleres, Bert Bos, Rob Brennan, Bud Bruegger, Fajar J Ekaputra,
Ramisa Gachpaz Hamed, Elmar Kiesling, Mark Lizar, Eva Schlehan, et al. Creating a vocabulary
for data privacy: the first-year report of data privacy vocabularies and controls community group
(dpvcg). 2019.

[22] Tobias Pulls, Roel Peeters, and Karel Wouters. Distributed privacy-preserving transparency logging.
In Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic society, pages
83–94, 2013.

[23] Mikko Rinne, Eva Blomqvist, Robin Keskisärkkä, and Esko Nuutila. Event processing in rdf. In
Proc. of WOP-Volume 1188, 2013.

[24] Stefan Sackmann, Jens Strüker, and Rafael Accorsi. Personalization in privacy-aware highly dynamic
systems. Communications of the ACM, 49(9), 2006.

[25] Reza Samavi and Mariano P Consens. Publishing privacy logs to facilitate transparency and ac-
countability. Journal of Web Semantics, 50:1–20, 2018.

[26] Andrew Sutton and Reza Samavi. Blockchain enabled privacy audit logs. In International Semantic
Web Conference, pages 645–660. Springer, 2017.

[27] Andrzej Uszok, Jeffrey M. Bradshaw, Renia Jeffers, Niranjan Suri, Patrick J. Hayes, Maggie R.
Breedy, Larry Bunch, Matt Johnson, Shriniwas Kulkarni, and James Lott. KAoS policy and do-
main services: Towards a description-logic approach to policy representation, deconfliction, and
enforcement. In Proc. of POLICY, pages 93–96, 2003.

[28] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using blockchain to protect personal data.
In 2015 IEEE Security and Privacy Workshops, pages 180–184. IEEE, 2015.

27

	Introduction
	State of the Art
	Personal Data Processing
	Motivating Use Case Scenario
	Consent, Transparency and Compliance

	SPECIAL’s Usage Policy Language
	Data Usage Policy Model
	Basic Usage Policies
	General Usage Policies
	Use Case Specific Usage Policies

	The SPECIAL Log Vocabulary
	Outline of the SPLog Vocabulary
	Log
	Log entry
	Log entry content

	Grouping Log Entries

	SPECIAL Transparency and Compliance
	Using SPECIAL Resources for Compliance Checking
	The SPECIAL-K Architecture

	The SPECIAL Benchmark
	Choke Point-based Benchmark Design
	Data Generation
	Benchmark Tasks
	Key Performance Indicators (KPIs)

	Evaluation
	Scaling the Compliance Checking Process
	Streaming
	Batch processing
	Results on STC-bench Compliance Tasks
	C-T1: Different Complexities of Policies
	C-T2: Increasing Number of Users
	C-T4: Increasing Data Generation Rates
	C-T5: Batch Performance

	Conclusions

