

SPECIAL

Scalable Policy-awarE Linked Data arChitecture for

prIvacy, trAnsparency and compLiance

Deliverable No 3.4

Transparency & Compliance Release

Document version: 1.0

SPECIAL

D3.4 Transparency & Compliance Release PU

SPECIAL DELIVERABLE

Name, title and organisation of the scientific representative of the project's coordinator:

Ms Jessica Michel +33 4 92 38 50 89 jessica.michel@ercim.eu

GEIE ERCIM, 2004, route des Lucioles, Sophia Antipolis, 06410 Biot, France

Project website address: http://www.specialprivacy.eu/

Project

Grant Agreement number 731601

Project acronym: SPECIAL

Project title: Scalable Policy-awarE Linked Data arChitecture for

prIvacy, trAnsparency and compLiance

Funding Scheme: Research & Innovation Action (RIA)

Date of latest version of DoW against

which the assessment will be made:

17/10/2016

Document

Period covered: M18-M25

Deliverable number: D3.4

Deliverable title Transparency & Compliance Release

Contractual Date of Delivery: 31-01-2019

Actual Date of Delivery: 31-01-2019

Editor (s): Sabrina Kirrane (WU), Javier Fernandez (WU), Rigo

Wenning (ERCIM), Rudy Jacob (PROXIMUS), Piero

Bonatti (CeRICT)

Author (s): Wouter Dullaert, Uros Milosevic, Jonathan Langens,

Arnaud S'Jongers, Nora Szepes, Vincent Goossens,

Nathaniel Rudavsky-Brody, Ward Delabastita (TF),

Sabrina Kirrane, Javier Fernandez (WU)

Reviewer (s): Sabrina Kirrane, Javier Fernandez (WU), Rigo Wenning

(ERCIM), Rudy Jacob (PROXIMUS), Piero Bonatti

(CeRICT)

Contributor (s): Miguel A. Martínez-Prieto, Antonio Hernández-Illera

(University of Valladolid), Claudio Gutiérrez (University

of Chile), Jürgen Umbrich, Magnus Knuth (AKSW/KILT,

Leipzig University), Axel Polleres (WU), Simon Steyskal

(WU)

Participant(s): ERCIM, WU, CeRICT, TF, PROX

Work package no.: 3

Work package title: Big Data Policy Engine

Work package leader: TF

Distribution: PU

Version/Revision: 1.0 FINAL

Total number of pages (including cover): 91

SPECIAL

D3.4 Transparency & Compliance Release PU

Disclaimer

This document contains description of the SPECIAL project work and findings.

The authors of this document have taken any available measure in order for its content to be

accurate, consistent and lawful. However, neither the project consortium as a whole nor the

individual partners that implicitly or explicitly participated in the creation and publication of this

document hold any responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of this

publication is the sole responsibility of the SPECIAL consortium and can in no way be taken to reflect

the views of the European Union.

The European Union is established in accordance with the Treaty on European Union (Maastricht).

There are currently 28 Member States of the Union. It is based on the European Communities and

the Member States cooperation in the fields of Common Foreign and Security Policy and Justice and

Home Affairs. The five main institutions of the European Union are the European Parliament, the

Council of Ministers, the European Commission, the Court of Justice and the Court of Auditors

(http://europa.eu/).

SPECIAL has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731601.

Contents

1 Summary 8

2 Architecture Overview 9
2.1 Big Data Europe . 9
2.2 Apache Kafka . 11
2.3 Authentication and Authorization . 12

2.3.1 Authentication: OpenID Connect . 13
2.3.2 Authorization: OAuth2 . 17
2.3.3 Implementation . 17

3 Consent Management 19
3.1 API Design . 19

3.1.1 Applications . 20
3.1.2 Users . 22
3.1.3 Policies . 23
3.1.4 Authorization . 26

3.2 Database Layer . 26
3.2.1 Document Store . 26
3.2.2 Streaming Queries . 26

3.3 Change Feeds . 27
3.3.1 Transaction Log . 27
3.3.2 Full Policy Log . 27

4 Compliance Checking 29
4.1 Data Flow . 29

4.1.1 Application Log Topic . 30
4.1.2 Policies Topic . 30
4.1.3 Base Ontology . 31

4.2 Compliance Checking . 32
4.2.1 Application Log Flow . 32
4.2.2 Subsumption . 32

4.3 Scaling and Fault-Tolerance . 33

5 Transparency Dashboard 34
5.1 Overview of Components . 34
5.2 Current State . 35

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 5/91

6 Personal Data Inventory 36
6.1 Personal Data Inventory Architecture . 36

6.1.1 Dispatch Layer . 36
6.1.2 Business Layer . 37

6.2 Data Layer . 38
6.3 Personal Data Inventory Gateway . 38

7 RDF Compression 39
7.1 Compressing RDF Data . 39

7.1.1 Classification of RDF compressors . 40
7.1.2 Applications of RDF compressors . 42

7.2 HDTQ: Managing RDF Datasets in Compressed Space 43
7.2.1 RDF preliminaries . 43
7.2.2 HDT preliminaries . 44
7.2.3 HDTQ: Adding Graph Information to HDT 46
7.2.4 Extending the HDT Components . 46
7.2.5 Quad Indexes: Graph and Triples Annotators 47
7.2.6 Search Operations . 48
7.2.7 HDTQ Discussion . 50

7.3 Strategies to Evaluate the Performance of RDF Archives 50
7.3.1 Preliminaries on RDF Archives . 51
7.3.2 Evaluation of RDF Archives: Challenges and Guidelines 53
7.3.3 BEAR: A Test Suite for RDF Archiving 58
7.3.4 Discussion . 64

8 Encryption 66
8.1 Encrypting RDF Data . 66
8.2 Fine-grained Encryption for RDF . 67

8.2.1 A Functional Encryption Scheme for RDF 68
8.2.2 Optimising Query Execution over Encrypted RDF 70

8.3 HDTcrypt: Extending HDT for Encryption . 74
8.3.1 Representing access-restricted RDF datasets 74
8.3.2 HDTcrypt encoding . 76
8.3.3 Integration operations . 77
8.3.4 Efficient Partitioning HDTcrypt . 78

9 Discussion 83

H2020-ICT-2016-2017
Project No. 731601

List of Figures

2.1 SPECIAL-K architecture setup for ex post compliance checking 10
2.2 SPECIAL-K architecture setup for ex ante compliance checking 10
2.3 Uncompacted Log . 13
2.4 Compacted Log . 13
2.5 OpenID Connect Authentication Flow . 14
2.6 OpenID Connect Implicit Flow . 16

3.1 Consent Management . 20
4.1 Compliance Checker . 29

5.1 Transparency Dashboard . 34

6.1 Personal Data Inventory backend architecture 37

7.1 An RDF dataset DS consisting of two graphs, GraphWU and GraphTU. . . . 44
7.2 HDT Dictionary and Triples for a graph G (merging all triples of Fig. 7.1). . . 45
7.3 HDTQ encoding of the dataset DS. 46
7.4 Annotated Triples and Annotated Graphs variants for the RDF dataset DS. . . 47
7.5 Example of RDF graph versions. 51
7.6 Dataset description. 59
7.7 Dataset description. 63

8.1 Partially Encrypted RDF graph . 67
8.2 Partially Encrypted RDF graph and Metadata 67
8.3 Process of encrypting an RDF triple t. 69
8.4 3-Index approach for indexing and retrieval of encrypted triples. 71
8.5 Vertical Partitioning (VP) approach for indexing and retrieval of

encrypted triples. 73
8.6 An access-restricted RDF dataset such that G comprises three separate access-

restricted subgraphsG1, G2, G3; the graph’s canonical partition is comprised of
four non-empty subgraphs G′1, G

′
2, G

′
3, G

′
23, whereas the terms in these graphs

can be partitioned into five non-empty subsets corresponding to the dictionaries
D′1, D

′
2, D

′
3, D

′
23, D

′
123. 75

8.7 HDTcrypt−A, create and encrypt one HDT per partition. 76
8.8 HDTcrypt−B , extracting non-overlapping triples. 78
8.9 HDTcrypt−C , extracting non-overlapping dictionaries. 79

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 7/91

8.10 Union of dictionaries (in HDTcrypt−C) to codify the non-overlapping dictionar-
ies of a partition. 79

8.11 HDTcrypt−D, extracting non-overlapping dictionaries and triples. 80
8.12 Merge of dictionaries (in HDTcrypt−D) to codify the non-overlapping dictionar-

ies and triples of a partition. 81

H2020-ICT-2016-2017
Project No. 731601

Chapter 1

Summary

The goal of this report1 is to describe the third release of the SPECIAL platform. It builds
upon the research done in WP2 by providing working implementations of many of the ideas
presented in deliverables D2.5 Policy Language V2, D2.7 Transparency Framework V2 and
D2.8 Transparency and Compliance Algorithms V2. It also offers an update over the previous
release by reflecting on:

• ex ante compliance checking,

• consent backend changes,

• the personal data inventory,

• compression and encryption, and

• overall performance improvements (to be demonstrated in D3.5).

It is worth noting that, even though the work in WP2 has been finalized, not all choices are
final, and some challenges will be tackled in D3.6 Final Release.

The first chapter presents the platform architecture as a whole. This will give the reader an
overview of the various supported features, how the individual components interact and detailed
information on some cross cutting concerns.

In subsequent chapters specific components of the architecture are discussed in more detail.
Special focus is placed on documenting design decisions which might not be obvious from the
source code.

At the time of publishing, the source code is available on GitHub2, while a working version
of the platform is hosted by TenForce3.

1D3.4 Transparency & Compliance Release is a DE (demonstrator) type deliverable.
2https://github.com/specialprivacy
3http://projects.tenforce.com/special/demo

H2020-ICT-2016-2017
Project No. 731601

Chapter 2

Architecture Overview

This chapter documents the overall architecture of the SPECIAL platform as it is currently
envisioned. It documents the guiding design principles, and focus on cross cutting concerns and
how data flows between the various components.

Depending on the intended use case, we distinguish between two conceptually different,
yet implementation-wise similar architecture setups: ex post and ex ante policy compliance
checking.

Ex post compliance checking. A high level overview of the architecture is shown in Figure
2.1. As they process personal data, applications write the processing events to a processing log,
which is then inspected for compliance.

Ex ante compliance checking. A similar overview of the SPECIAL-K architecture setup
(as defined in D2.8 Transparency and Compliance Algorithms V2) is given in Figure 2.2. Appli-
cations submit their requests for (immediate) processing of personal data, which are inspected
for compliance. The answers are then fed back to the requesting applications via the Personal
Data Gateway. It is worth noting here that time is a factor (as consent is always subject to
change) and that a response should be considered valid only if it is followed by immediate
processing.

In its current state, regardless of the setup, five main components can be identified in the
SPECIAL-K architecture:

1. Existing line of business applications

2. Consent management services

3. Compliance checker service

4. Transparency services

5. Personal data inventory

Each of these services will be covered in more detail in their own chapters. All the components
are integrated using message passing through Apache Kafka [1].

2.1 Big Data Europe

The architecture proposed here builds on the experience from the H2020 Big Data Europe (BDE)
project [2].

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 10/91

Figure 2.1: SPECIAL-K architecture setup for ex post compliance checking

Figure 2.2: SPECIAL-K architecture setup for ex ante compliance checking

BDE leveraged Docker technologies to simplify installing and running big data technologies.
Software is packaged into Docker images for ease of distribution and composed into working
systems using Docker Compose [3]. BDE leveraged Docker Swarm [4] to deploy a system onto
a cluster of machines rather than a single machine.

The architecture proposed here follows all the best practices from BDE and the live prototype

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 11/91

has been deployed using this tooling. This allows us to move the system from a single machine
during development to a robust clustered deployment with ease.

2.2 Apache Kafka

Kafka [1], describes itself as a distributed streaming platform. It is easiest to think of it as a fault
tolerant, append-only log. This is a very generic primitive to build robust distributed systems
with.

Kafka has three main capabilities:

• Publish and subscribe to a stream of records (similar to a queue or Enterprise Service Bus
(ESB))

• Store records in a fault-tolerant durable way (unlike a queue or ESB)

• Optionally process records as they occur using the Kafka Stream library

In the software system described in this deliverable, Kafka will be used as a datastore, but its
data processing capabilities will not be leveraged. These will be handled using other software.
This should make the approach less intrusive and make it easier for companies with existing line
of business applications to adopt the platform.

Kafka has a few core abstractions:

• Kafka runs on a cluster of 1 or more servers, called brokers.

• Kafka stores records in categories called topics.

• Topics are subdivided into partitions.

• Records consist of a key, offset and value.

Unlike normal queueing systems, records in Kafka are persisted whether they are consumed or
not. It is a kind of special purpose distributed filesystem dedicated for high-performance, low-
latency commit log storage, replication, and propagation. How long records are persisted inside
of Kafka is governed by a retention policy, which can be set on a topic by topic basis:

• Time based retention: records are kept for a certain period of time.

• Size based retention: records are kept in a topic until it reaches a certain size, after which
the oldest records are purged until the storage quota has been met.

• Log compaction: Kafka ensures that at least 1 record for every key is present in the topic.
Due to its importance, for the sake of clarity, log compaction is described in more detail
below.

Assume there is a topic with product descriptions. Each time a product description is updated
a new record is posted onto this topic with the productId as key and the product description
as value. An example of such a topic with 6 elements is shown in Figure 2.3. In this picture the

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 12/91

colour of the box represents the key of the record, the number below is the offset of the record.

When log compaction gets triggered, Kafka will remove all older messages for a given key,
retaining only the latest one. This results in a log with "gaps" as shown in Figure 2.4. With log
compaction, the size of the topic will be bounded, provided the size of the keyspace is bounded
(no infinite number of products).

These various strategies give Kafka a lot of flexibility. Time based retention is great in an
IOT scenario where individual records have a short half life. Size based retention is very useful
in traditional queueing scenarios. Log compaction provides an elegant way to synchronise ref-
erence data between various systems.

For data consumption, Kafka combines the features of a queing system with a pub-sub sys-
tem. Each consumer of data is part of a consumer-group. Every message on a topic will be sent
to every consumer-group, implementing the broadcast behaviour of a pub-sub system. Within
a consumer-group Kafka will assign the partitions of a topic to the individual consumers in the
group. This allows processing of a topic to be scaled out horizontally, like what is possible with
a queue and a worker pool. Because a partition can only be assigned to a single consumer within
a consumer-group, the number of consumers in a consumer group can never be larger than the
total number of partitions.

When compared with other storage systems, such as Hadoop, the advantage of Kafka is that
it has the API of a pub-sub and queuing system. It allows us to treat data and data updates as
immutable event and has well defined semantics for how to consume these, while in Hadoop’s
file oriented world most of the semantics need to be communicated out of band. (Are records
updated in place? Are they appended to the bottom of the file?)

All these features make Kafka a very flexible data layer for our system:

• It can act as a buffer.

• It can minimize the coupling between the various components.

• Its streaming nature allows the system to do near real time data processing, while still
providing support for more batch oriented workload (you can always slow down from
real time, but it’s hard to speed batch jobs up to realtime).

• Its easy to understand and implement semantics make it easier to build robust and scalable
data processing systems.

Combined with the fact that it is mature, well supported, and proven open source software in
use by some of the largest companies in the world [34, 35, 96], the authors feel confident in its
selection as the data substrate for the SPECIAL system.

2.3 Authentication and Authorization

In order to authenticate users, the SPECIAL platform relies on the OpenID Connect, [7] industry
standard for authentication and OAuth2 for authorization, [6].

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 13/91

0 1 2 3 4 5
Figure 2.3: Uncompacted Log

0 2 4 5
Figure 2.4: Compacted Log

2.3.1 Authentication: OpenID Connect

Authentication is the process by which the user makes a claim about his identity and proves
this claim. It can losely be described as "logging in". OpenID Connect is a protocol by which
both native apps and web applications1 can delegate the authentication to a 3rd party identity
provider. It builds upon OAuth2 by combining various OAuth2 message flows into an authenti-
cation flow.

Before describing the two main OpenID Connect flows in more detail, some terms are intro-
duced:

• Identity Provider (IDP): The party that offers authentication as a service. It is the service
that will confirm the identity of the user (using e.g. passwords or two-factor authentication
tokens). Examples of identity providers are Google, Facebook or a country’s eID system.

• Relying Party (RP): This party is the application which would like to establish the iden-
tity of a user. By implementing OpenID Connect it delegates this task to the IDP. The
applications described in this deliverable act as RPs.

• Claim: This is information asserted by a user, such as name or email address.

OpenID Connect presents 3 flows:

1. Authentication or Basic Flow: This flow is useful for web and native applications with
a trusted backend components.

2. Implicit Flow: This is flow is useful for web applications without a trusted backend
component, such as single page web applications.

1Unlike the often used Security Assertion Markup Language 2.0 (SAML2) which only supports web applications.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 14/91

User IDPBackend / RP

GET /some-resource

GET /authorize

Redirect to RP /callback with Authorization Token
IDP Specific login flow

GET /callback

Redirect to IDP /authorize

Returns /some-resource

Redeem Authorization Token

Returns ID and Access Token

(opt) GET /userInfo

(opt) Returns User Info Claims

Figure 2.5: OpenID Connect Authentication Flow

3. Hybrid Flow: This flow is a mix of the implicit flow and authentication flow. It is hardly
ever used and won’t be further discussed in this deliverable.

All OpenID Connect (and OAuth2) flows assume that all communication happens over Trans-
port Layer Security (TLS) encrypted HTTP connections (HTTPS), preventing any secrets or
tokens transmitted from being leaked to attackers which evesdrop on the network connection.
This moves a lot of encryption and security complexity away from developers implementing
these standards in their application, into the underlying infrastructure.

The following subsections will describe the Authentication Flow (2.3.1.1) and the Implicit Flow
(2.3.1.2) at a relatively high level. The goal is for the reader to get an idea how these flows work,
why they are secure and that they cover the authentication needs of the platform, without losing
ourselves into too many implementation details.

A more detailed overview of the tradeoffs to consider when chosing the flow an application
should use can be found in [22].

2.3.1.1 Authentication Flow

The Authentication Flow is the most secure, and most commonly used OpenID Connect flow.
A call diagram is shown in Figure 2.5

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 15/91

The flow describes an interaction between the following parties:

• User-agent. This could be a client application written by the RP, but it can also be any
other application that can speak to the backend. It is an untrusted party. In Figure 2.5, this
is represented as the user.

• Backend. This is the Relying Party (RP) which wishes to authenticate a user. It is a
trusted party.

• IDP. The Identity Provider to which the RP wants to delegate the proving of the identity
of the user.

The flow consists of the following steps:

1. The user requests a resource, or performs an action which requires him to be authenti-
cated.

2. The RP notices that this is not an authenticated session and redirects the user to the
/authorize of the IDP, embedding information about the RP.

3. The user follows the redirection and goes through the IDP login flow.

4. After the user has successfully followed the login flow the user is redirected to a callback
at the RP. This callback embeds an Authorization Token.

5. The RP retrieves the Authorization Token from the callback and sends a request to the IDP
to redeem it.

6. The IDP verifies that the Authorization Token is valid and issued for the RP that tries to
redeem it and returns an Access Token, an ID Token and optionally a Refresh Token.

7. The RP can now optionally call the /userInfo endpoint at the IDP with the Access
Token if it needs more user claims than those included in the ID Token.

8. If the token is valid and has the necessary grants, the IDP will return the claim (user
information) to the RP.

At the end of this flow, the IDP will have produced 3 different tokens, each of which serves a
different purpose:

• Authorization Token: Since the IDP does not have backchannel to talk to the RP directly,
it needs to relay the results of the login flow through the untrusted user-agent. In order
to prevent any confidential data from leaking, the IDP sends this single-use Authorization
Token with a short time to live (typically less than an hour). This token can be exchanged
only by the RP for the actual Identity and Access Tokens.

• ID Token: This token encodes the claims (user data such as email and name) the RP has
requested from the end user. While it is theoretically possible to embed any user data the
IDP has, most IDPs put limits here, requiring the RP to call the /userInfo endpoint
for additional, more sensitive, information.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 16/91

User IDPClient / RP

GET /some-resource

Redirect to IDP /authorize

GET /authorize

Redirect to RP /callback with ID Token and Acces Token
IDP Specific login flow

GET /callback

Redirect to IDP /authorize

Returns /some-resource
Validates that tokens have been issues by IDP

Figure 2.6: OpenID Connect Implicit Flow

• Access Token: The access token grants its bearer the right to call the /userInfo at the
IDP for specific user information. The RP can use this to retrieve additional user claims
not included in the ID Token, but it can also pass this token in request to downstream
services which might need to verify the end users identity. The token can optionally
encode additional authorizations.

• Refresh Token: This token can be used to refresh the Identity and Access token. This
allows the time to live on these tokens to be short (limiting potential damage should they
get leaked), but allows the RP to renew them without forcing the end user to go through
the login flow repeatedly.

The main advantage of OpenID Connect is that the IDP can introduce new and better ways of
verifying the identity claim of the user (such as 2FA or biometric methods) without any code or
logic changes in the RP. The protocol does not need to change.

2.3.1.2 Implicit Flow

The implicit flow is useful for single page applications without a trusted backend. A call diagram
is shown in Figure 2.6. The flow describes an interaction between the following parties:

• User-agent: In this flow, the user-agent is typically the browser used to interact with a
client side application. It is an untrusted party.

• Client: This is the Relying Party (RP) trying to establish the identity of the user. In this
flow the RP is assumed to run in an untrusted environment.

• IDP: The Identity Provider to which the RP wants to delegate the proving of the identity
of the user.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 17/91

The flow consists of the following steps:

1. The user requests a resource, or performs an action which requires him to be authenti-
cated.

2. The RP notices that this is not an authenticated session and redirects the user to the
/authorize of the IDP, embedding information about the RP.

3. The user follows the redirection and goes through the IDP login flow.

4. After finishing the login flow the IDP redirects the user to a callback at the RP. This
callback embeds the Identity Token and an optional Access Token.

The flow is very similar to the Authentication flow described in Section 2.3.1.1, but in this case
the RP is not running in a trusted environment. This means that the additional step of redeeming
an authorization token adds no practical security: the ID and Access Token will end up in an
untrusted environment anyway. Also because the RP runs in an untrusted environment, the IDP
places less trust in it and will not issue a refresh token in this flow.

2.3.2 Authorization: OAuth2

OAuth2 is an authorization protocol. That means it concerns what a particular entity has access
to rather than who that particular entity is. The specification describes a large amount of flows
which can be implemented and that each have their own security tradeoffs. Because it can be
very useful to know who an entity is when deciding what it has access to, quite a few OAuth2
flows also authenticate a user, but because the spec is focused on authorization, these aspects
are often underspecified, leaving room for interpretation or custom implementations. This ob-
viously gets in the way of interoperability and are the gaps that OpenID Connect aims to fill.

Because the OpenID Connect flows allow us to obtain authorization at the same time as au-
thenticating a user, they currently satisfy the needs of this architecture. However in case a need
for more intricate authorization flows presents itself, additional OAuth2 authorization flows can
be introduced.

2.3.3 Implementation

In the demonstrator implementation Redhat Keycloak [5] has been selected as Identity provider
and OpenID Connect / OAuth2 server. It is a fully featured Open Source product in use by
companies big and small. Notable features of the product are:

• Federation of other identity providers through Active Directory or LDAP

• Federation of social logins such as Google or Facebook

• Broad support for authentication and authorization protocols such as SAML 2, OAuth2
and OpenID Connect

In case a company trying to adopt the system does not have an identity provider which supports
OpenID Connect out of the box, Keycloak can be used to provide an OpenID Connect server
without invasive changes to the existing landscape.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 18/91

It is worth reiterating that while the demo system uses Keycloak, there is no strict require-
ment on it. The system has standardised on the OpenID Connect and OAUth2 protocols, not
this particular implementation.

H2020-ICT-2016-2017
Project No. 731601

Chapter 3

Consent Management

This chapter describes the backend of the consent management service. Even though the demon-
strator includes a frontend, the frontend / UX discussions are handled in WP4 and, more specif-
ically, D4.1 Transparency Dashboard and Control Panel Release V1. The included frontend is
just there to make it easier to present and evaluate the backend features.

The purpose of this service is to provide data subjects and data controllers a way to manage
their policies. These type of services are commonly referred to as CRUD services: they need to
(C)reate, (R)ead, (U)pdated and (D)elete data entities. An architecture that is commonly used
to implement CRUD services, augmented with an audit log, has been chosen:

• An API Layer which allows frontends and other clients to call its services. Data validation
and authorization checks happen here as well (Section 3.1).

• A database layer which persists the data in a format which is optimized for use by the API
Layer (Section 3.2).

• Audit logs which record all transactions (Section 3.3).

3.1 API Design

The consent management API allows the manipulation of 3 different entities:

1. Applications

2. Users

3. Policies

Each of these entities is manipulated in a similar way. The following subsections will briefly
describe the various endpoints and show some example payloads. This is not a full nor a final
API specification, but should give the interested reader a decent understanding of how the API
should be used. It is highly likely that specifics of the API will change as the platform evolves:
this is very much a work in progress and no backward compatibility guarantees are given.

The API calls which allow for the retrieval of policy data are intended for use by UI clients

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 20/91

Figure 3.1: Consent Management

which wish to render an individual users policies. Services which require much more intensive
use of policy data, such as the compliance checker or a potential authorization server, should
preferably consume the policies from the full policy Kafka topic (see Section 3.3). This provides
better decoupling, relaxes performance requirements on this service and provides consuming
services with the option of reshaping the policy data to better fit their needs.

3.1.1 Applications

The /applications endpoints allow applications and their associated policies to be regis-
tered with the system.

• GET /applications
Returns a list of all currently registered applications.

Example Response:

[
{
"id": "d5aca7a6-ed5f-411c-b927-6f19c36b93c3",
"name": "invoicer",
"links": {
"policies": "/applications/d5aca7a6-ed5f-411c-b927-6

f19c36b93c3/policies"
}

},
{
"id": "58916c9e-3ce2-4fdb-94a4-369525582e75",

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 21/91

"name": "marketing-machine",
"links": {
"policies": "/applications/58916c9e-3ce2-4fdb-94a4-369525582

e75/policies"
}

}
]

• POST /applications
Creates a new application. Returns the created application with its generated ID if the
request was sucessful.

Example Request:

{
"name": "new-application"

}

Example Response:

{
"id": "ca775d49-c3a3-4e08-9e6a-9ac49612ad62",
"name": "new-application"
"links": {
"policies": "/applications/ca775d49-c3a3-4e08-9e6a-9

ac49612ad62/policies"
}

}

• GET /applications/:id
Returns a single registered application.

Example Response:

{
"id": "d5aca7a6-ed5f-411c-b927-6f19c36b93c3",
"name": "invoicer",
"links": {
"policies": "/applications/d5aca7a6-ed5f-411c-b927-6

f19c36b93c3/policies"
}

}

• PUT /applications/:id
Updates a single registered application. Returns the updated data.

Example Request:

{
"id": "d5aca7a6-ed5f-411c-b927-6f19c36b93c3",
"name": "accounting"

}

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 22/91

Example Response:

{
"id": "d5aca7a6-ed5f-411c-b927-6f19c36b93c3",
"name": "accounting",
"links": {
"policies": "/applications/d5aca7a6-ed5f-411c-b927-6

f19c36b93c3/policies"
}

}

• DELETE /applications/:id
Deletes a single registered application. Takes no payload and returns no data.

• GET /applications/:id/policies
Returns the policies associated with a single application.

Example Resonpse:

{
"policies": [
"d5bbb4cc-59c0-4077-9f7e-2fad74dc9998",
"54ff9c00-1b47-4389-8390-870b2ee9a03c",
"d308b593-a2ad-4d9f-bcc3-ff47f4acfe5c",
"fcef1dbf-7b3d-4608-bebc-3f7ff6ae4f29",
"be155566-7b56-4265-92fe-cb474aa0ed42",
"8a7cf1f6-4c34-497f-8a65-4c985eb47a35"

]
}

3.1.2 Users

The /users endpoints allow the policies of individual data subjects to be retrieved and mod-
ified. Registration of data subjects with the system is handled by the identity provider, so the
API does not provide any specific endpoints for these actions.

• GET /users/:id
Return a single user information and its policies.

Example Response:

{
"id": "9b84f8a5-e37c-4baf-8bdd-92135b1bc0f9",
"name": "Bernard Antoine",
"links": {
"policies": "/users/9b84f8a5-e37c-4baf-8bdd-92135b1bc0f9/

policies"
}

}

• PUT /users/:id
Update a single user information and its policies

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 23/91

Example Request:

{
"id": "9b84f8a5-e37c-4baf-8bdd-92135b1bc0f9",
"policies": [
"d5bbb4cc-59c0-4077-9f7e-2fad74dc9998",
"0cb2b717-a442-4da5-818c-1c1c2e762201"

]
}

Example Response:

{
"id": "9b84f8a5-e37c-4baf-8bdd-92135b1bc0f9",
"name": "Bernard Antoine",
"links": {
"policies": "/users/9b84f8a5-e37c-4baf-8bdd-92135b1bc0f9/

policies"
}

}

• GET /users/:id/policies
Returns the policies associated with a particular user.

Example Response:

{
"policies": [
"d5bbb4cc-59c0-4077-9f7e-2fad74dc9998",
"0cb2b717-a442-4da5-818c-1c1c2e762201"

]
}

3.1.3 Policies

• GET /policies
Returns a list of all policies currently registered in the system.

Example Response:

[
{
"id": "d5bbb4cc-59c0-4077-9f7e-2fad74dc9998",
"dataCollection": "http://www.specialprivacy.eu/vocabs/data#

Anonymized",
"locationCollection": "http://www.specialprivacy.eu/vocabs/

data#EU",
"processCollection": "http://www.specialprivacy.eu/vocabs/

data#Collect",
"purposeCollection": "http://www.specialprivacy.eu/vocabs/

data#Account",

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 24/91

"recipientCollection": "http://www.specialprivacy.eu/vocabs/
data#Delivery",

"explanation": "I consent to the collection of my anonymized
data in Europe for the purpose of accounting."

},
{
"id": "54ff9c00-1b47-4389-8390-870b2ee9a03c",
"dataCollection": "http://www.specialprivacy.eu/vocabs/data#

Derived",
"locationCollection": "http://www.specialprivacy.eu/vocabs/

data#EULike",
"processCollection": "http://www.specialprivacy.eu/vocabs/

data#Copy",
"purposeCollection": "http://www.specialprivacy.eu/vocabs/

data#Admin",
"recipientCollection": "http://www.specialprivacy.eu/vocabs/

data#Same",
"explanation": "I consent to the copying of my derived data

in Europe-like countries for the purpose of administration
."

}
]

• POST /policies
Creates a new policy. Returns the created policies if the operation was successful.

Example Request:

{
"dataCollection": "http://www.specialprivacy.eu/vocabs/data#

Computer",
"locationCollection": "http://www.specialprivacy.eu/vocabs/data

#ThirdParty",
"processCollection": "http://www.specialprivacy.eu/vocabs/data#

Move",
"purposeCollection": "http://www.specialprivacy.eu/vocabs/data#

Browsing",
"recipientCollection": "http://www.specialprivacy.eu/vocabs/

data#Public",
"explanation": "I consent to the moving of my computer data on

third-party servers for the purpose of browsing."
}

Example Response:

{
"id": "d308b593-a2ad-4d9f-bcc3-ff47f4acfe5c",
"dataCollection": "http://www.specialprivacy.eu/vocabs/data#

Computer",
"locationCollection": "http://www.specialprivacy.eu/vocabs/data

#ThirdParty",
"processCollection": "http://www.specialprivacy.eu/vocabs/data#

Move",

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 25/91

"purposeCollection": "http://www.specialprivacy.eu/vocabs/data#
Browsing",

"recipientCollection": "http://www.specialprivacy.eu/vocabs/
data#Public",

"explanation": "I consent to the moving of my computer data on
third-party servers for the purpose of browsing."

}

• GET /policies/:id
Returns an individual policy.

Example Response:

{
"id": "d5bbb4cc-59c0-4077-9f7e-2fad74dc9998",
"dataCollection": "http://www.specialprivacy.eu/vocabs/data#

Anonymized",
"locationCollection": "http://www.specialprivacy.eu/vocabs/data

#EU",
"processCollection": "http://www.specialprivacy.eu/vocabs/data#

Collect",
"purposeCollection": "http://www.specialprivacy.eu/vocabs/data#

Account",
"recipientCollection": "http://www.specialprivacy.eu/vocabs/

data#Delivery",
"explanation": "I consent to the collection of my anonymized

data in Europe for the purpose of accounting."
}

• PUT /policies/:id
Updates an individual policy. The updated policy is returned if the operation was success-
ful.

Example Request:

{
"id": "d5bbb4cc-59c0-4077-9f7e-2fad74dc9998",
"locationCollection": "http://www.specialprivacy.eu/vocabs/data

#EULike"
}

Example Response:

{
"id": "d5bbb4cc-59c0-4077-9f7e-2fad74dc9998",
"dataCollection": "http://www.specialprivacy.eu/vocabs/data#

Anonymized",
"locationCollection": "http://www.specialprivacy.eu/vocabs/data

#EULike",
"processCollection": "http://www.specialprivacy.eu/vocabs/data#

Collect",
"purposeCollection": "http://www.specialprivacy.eu/vocabs/data#

Account",

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 26/91

"recipientCollection": "http://www.specialprivacy.eu/vocabs/
data#Delivery",

"explanation": "I consent to the collection of my anonymized
data in Europe for the purpose of accounting."

}

• DELETE /policies/:id
Removes an individual policy. References to this policy are also removed from applica-
tions and users. Takes no payload and returns no data.

3.1.4 Authorization

The consent management service relies on the OpenID Connect Authentication Flow (see 2.3.1).
This is the most secure OpenID Connect flow. The consent management service uses the data
from the ID Token to bootstrap a user in the system, if it does not yet exist. This is why no
POST /users and DELETE /users/:id endpoints exist. The entire lifecycle of a user is
outsourced to the identity provider.

Similarly the information contained in the ID Token is used to filter data to just the data from
the authenticated user.

3.2 Database Layer

For the database layer, originally, RethinkDB, [8], had been chosen. As stated in D3.2, the
choice for RethinkDB was never critical for the SPECIAL platform, as most databases can be
easily used for CRUD services. As the Proximus use case (as stated in D5.1 Pilot implemen-
tations and testing plans) relies on MongoDB, a conscious choice was made to switch over
to MongoDB as the default consent management backend data store, while still offering Re-
thinkDB as an alternative.

3.2.1 Document Store

Both MongoDB and RethinkDB are document stores which can persist native JSON. Because
our API layer communicates using JSON, this aspect minimizes the impedance mismatch be-
tween the two parts. The document model is also very flexible and allows us to easily modify the
schema of the data. Unlike Rethinkdb, MongoDB offers full support for multi-document ACID
transactions, which can be seen as an advantage over its predecessor (even though document-
level atomicity can be sufficient for our purposes with careful document design).

3.2.2 Streaming Queries

Rethinkdb offers first class support for streaming queries. In most databases queries will return
the matching data at the point the query was issued. If the application is interested in updates on
this data it will need to poll the database, by regularly issuing the query again. Rethinkdb on the
other hand allows a client to subscribe to a query. When the subscription starts Rethinkdb will
return the results of the query as usual, but when changes to the database happen, which impact
the results of the query, Rethinkdb will push the delta between the original query result and the

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 27/91

current query result to the client.

This feature makes it very easy to implement the audit log. A query can be created which
returns the data in exactly the right shape. The data can then be written onto Kafka for long
term persistence as it arrives.

MongoDB, on the other hand, has change streams, allowing applications to easily subscribe
to changes on the data in the system, which is necessary to populate the audit log. The change
events emitted by these streams contain only the updated information of the record, which is not
always sufficient. If this is the case, conventional database calls are used to gather the necessary
information after successfully updating the consent information.

3.3 Change Feeds

The consent management service provides two change feeds:

1. Transaction Log

2. Full Policy Log

The consent management service is the only service which can write data to either of these
logs. The access control mechanisms in Kafka are used to enforce this. The logs allow the
reconstruction of the current state by replaying them in their entirety, but they do serve distinct
purposes which are described in more detail in the following subsections.

3.3.1 Transaction Log

The transaction log is retained for audit purposes. It logs every command sent by a client. It
could be described as the log of the intent of the user. It is strictly ordered and contains only the
differences between two states. For example (this is not the actual format used on the log, but a
more human readable version):

SET "3bd2731b-2361-4de6-b0e5-dd12e64827a9" [{"id": "3bd2731b-2361-4
de6-b0e5-dd12e64827a9", "purpose": "charity"}]

It can be used to figure out who changed what data at a particular point in time. It also allows the
state of the consent management service to be reconstructed at any particular point in time, by
replaying the log in a fresh instance until that timestamp. This can be useful for what-if analysis
or proving to an auditor that particular processing was lawful at a particular time.

3.3.2 Full Policy Log

The full policy (also referred to as "consent and policy") log is retained for integration purposes.
It is a compacted Kafka topic (see Section 2.2): only the latest version of the policies of a data
subject are retained. This makes it easy for services like the compliance checker to bootstrap
their own materialised view of the policies and consume updates to those policies, without plac-
ing any load on the consent management service.

The data subject ID is stored in key of the record. The record value is a json representation
of the data subject policies. For example:

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 28/91

{
"simplePolicies":[
{
"data":"http://www.specialprivacy.eu/vocabs/data#Anonymized",
"processing":"http://www.specialprivacy.eu/langs/usage-policy#

AnyProcessing",
"purpose":"http://www.specialprivacy.eu/langs/usage-policy#

AnyPurpose",
"recipient":"http://www.specialprivacy.eu/langs/usage-policy#

AnyRecipient",
"storage":"http://www.specialprivacy.eu/langs/usage-policy#

AnyDuration"
},{
"data":"http://www.specialprivacy.eu/vocabs/data#AnyData",
"processing":"http://www.specialprivacy.eu/langs/usage-policy#

AnyProcessing",
"purpose":"http://www.specialprivacy.eu/langs/usage-policy#

Charity",
"recipient":"http://www.specialprivacy.eu/langs/usage-policy#

AnyRecipient",
"storage":"http://www.specialprivacy.eu/langs/usage-policy#

AnyDuration"
}

]
}

Because this log is compacted, it cannot be used to reconstruct the state of the consent manage-
ment system at an arbitrary point in the past.

H2020-ICT-2016-2017
Project No. 731601

Figure 4.1: Compliance Checker

Chapter 4

Compliance Checking

This chapter describes the compliance checker service in more detail. Its purpose is to validate
that application logs are compliant with a users policy. These application logs are delivered in
the format described in deliverable D2.3, the policies are an implementation of the policy lan-
guage described in deliverable D2.1.

Figure 4.1 shows an overview of the components that will be discussed in this section.

4.1 Data Flow

The compliance checker can be seen as a stream processor which takes in a stream of application
logs and emits an augmented stream of logs. The system has the following data inputs:

• Application Log Topic: This is a normal Kafka topic that contains all application (pro-
cessing event/request) logs which need to be checked for compliance.

• Consent and Policy Topic: This is a compacted Kafka topic which holds the complete
policies for all data subjects.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 30/91

• Base Ontology: The base ontology are the vocabularies and class relationships which
define the policy language as described in deliverable D2.1.

The system has the following outputs:

• Compliance Topic: This is a normal Kafka topic which contains the augmented applica-
tion logs.

• State Topic: This is a compacted Kafka topic where the compliance checker can check-
point the latest offset it has processed. This allows it to easily restore its state in case it
needs to restart.

4.1.1 Application Log Topic

The application log topic contains, as the name implies, the logs produced by the various line of
business applications in the broader ecosystem. The compliance checker assumes that the logs
are written in, or have been transformed into, the json serialization of the format described in
D2.3. An example log can look as follows:

{
"timestamp": 1524223395245,
"process": "send-invoice",
"purpose": "http://www.specialprivacy.eu/vocabs/purposes#Payment",
"processing": "http://www.specialprivacy.eu/vocabs/processing#Move

",
"recipient": "http://www.specialprivacy.eu/langs/usage-policy#

AnyRecipient",
"storage": "http://www.specialprivacy.eu/vocabs/locations#

ControllerServers",
"userID": "49d40b22-4337-4652-b463-41b1c23c6b08",
"data": [
"http://www.specialprivacy.eu/vocabs/data#OnlineActivity",
"http://www.specialprivacy.eu/vocabs/data#Purchase", "http://www.

specialprivacy.eu/vocabs/data#Financial"
]

}

In a future version of the service, a jsonld context will most likely be added to this file. Alterna-
tively, a turtle serialization could be used to make parsing the logs easier.

Records on this topic use the data subject ID as a key, so that the data can be easily partitioned
by data subject. This is helpful when scaling up the work, see Section 4.3.

4.1.2 Policies Topic

The policies topic is a compacted Kafka topic which contains full policies for all data subjects.
Its content is produced by the consent management service, described in 3. The records have
the data subject ID as a key, so that the data can be easily partitioned by data subject. This is
helpful when scaling up the work, see Section 4.3.

Data subject policies are stored in a json serialization, an example of which can look as fol-
lows:

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 31/91

{
"simplePolicies":[
{
"data":"http://www.specialprivacy.eu/vocabs/data#Anonymized",
"processing":"http://www.specialprivacy.eu/langs/usage-policy#

AnyProcessing",
"purpose":"http://www.specialprivacy.eu/langs/usage-policy#

AnyPurpose",
"recipient":"http://www.specialprivacy.eu/langs/usage-policy#

AnyRecipient",
"storage":"http://www.specialprivacy.eu/langs/usage-policy#

AnyDuration"
},{
"data":"http://www.specialprivacy.eu/vocabs/data#AnyData",
"processing":"http://www.specialprivacy.eu/langs/usage-policy#

AnyProcessing",
"purpose":"http://www.specialprivacy.eu/langs/usage-policy#

Charity",
"recipient":"http://www.specialprivacy.eu/langs/usage-policy#

AnyRecipient",
"storage":"http://www.specialprivacy.eu/langs/usage-policy#

AnyDuration"
}

]
}

When a record is read from the topic, it is transformed into an OWL XML representation and
saved to a temporary file, which can be indexed by the subject ID. When a new version of the
policy for a particular data subject is read from Kafka, the existing temporary file is completely
overwritten. In a future version of this service, this file based index will be replaced with a
(potentially in-memory) key-value store.

4.1.3 Base Ontology

The base ontology is a collection of OWL statements which describe the various classes and
their relationships, which are used to express policies. Without these definitions the OWL rea-
soner does not know how to make sense of any policies. The base ontology is saved in OWL
XML format and loaded from disk at startup. These files are shipped together with the binary. In
the current version of the policy checker, there is no way to load additional or different versions
of the base ontology, they are effectively hard coded.

A planned improvement is to turn the base ontology into data which the compliance checker
consumes from a Kafka topic. This will allow companies to more easily update the base ontol-
ogy, or define additional vocabularies which define company specific attributes to use in policies.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 32/91

4.2 Compliance Checking

4.2.1 Application Log Flow

When a compliance checker instance starts up, it initialises itself by first loading the base ontol-
ogy into memory.

The compliance of each application log is checked by going through the following steps:

1. Clone the base ontology into a new OWLOntology

2. Read the data subject ID from the key of the application log

3. Lookup the data subject policy by the data subject ID

4. Load the policy into the cloned OWLOntology

5. Peform the subsumption check (see Section 4.2.2)

6. Add the check result to the application log data structure

7. Write the augmented application log to the Compliance Kafka topic and the offset to the
state log

8. Discard the cloned OWLOntology

It is worth noting that application log is never persisted by the compliance checker and only
retained in memory for the duration of the subsumption check. Because the OWLOntology
used for the subsumption check only contains a small amount of information, these checks are
evaluated very quickly. An additional performance improvement was accomplished by avoiding
unnecessary (de)serialization steps. This will be demonstrated in D3.5 Scalability and Robust-
ness testing report V2.

4.2.2 Subsumption

As can be seen in deliverables D2.1 and D2.3, it can be verified that an application log is compli-
ant with a data subject policy by performing a subsumption check. The subsumption algorithm
used by the compliance checker is OWL API 3.4.31 compliant. It creates an OWLSubclassOfAxiom
that takes 2 OWLClasses and returns an OWLAxiom object that states that the first class is a
superclass of the second class.

This is then passed on to the isEntailed method which returns true or false. The im-
plementation of the reasoner is HermiT but this should be easily swapped with any other OWL
API 3.4.3 compliant reasoner.

1http://owlcs.github.io/owlapi/

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 33/91

4.3 Scaling and Fault-Tolerance

Section 4.2 details how an individual application log flows through the compliance checker and
is validated. This section zooms out a bit and details how the compliance checker can scale to
support a load beyond what a single instance can handle. Because scaling the computation to
multiple instances turns the compliance checker into a distributed system, it is also important to
look at how the processing will handle the various failures which will inevitably occur.

Since all of the data being processed by the compliance checker is stored on Kafka, it is im-
portant to understand the primitives it gives us to build a distributed stream processing system
(see also Section 2.2). Topics in Kafka are divided into partitions. Partitions are the actual log
structures which are persisted on disk. As a result ordering between records is only guaranteed
within a partition. If the record producer does not specify a partition explicitly, Kafka decides
which partition a record gets written to by using a partition function, which can take the key
of the record into account. Because a partition can only be assigned to a single consumer in
a consumer group, the number of partitions puts an upper limit to how far the processing of
records can be scaled out.

The total number of partitions of the application log topic will decide how many instances
of the compliance checker can process the data in parallel. Because the records are assigned to
a partition based on the data subject ID, it is guaranteed that an individual compliance checker
instance will see all logs about a particular data subject in the order they occurred. This is cur-
rently not necessary for the compliance algorithm to work, but keeps the option open to take
into account multiple log messages to make decisions about compliance.

Kafka automatically assigns partitions to individual consumers, and will rebalance the partition
assignment in case consumers get added or removed from the consumer group. This ensures
that all messages get processed and that each consumer gets a fair share of the work, even if
individual consumers fail.

In case of catastrophic failure, where all consumers die, the last processed offsets per parti-
tion can be recovered from the state topic. This prevents the new compliance checker instances
from redoing work which was already done previously. Provided the new instances are spawned
before the existing log messages fall out of retention, this catastrophic failure will also not result
in data loss.

It is also worth noting that in order to scale out the work and provide fault tolerance, no other
functionality, other than a few primitives provided by Kafka, is being relied upon. There are
no restrictions on how the compliance checker is programmed or deployed: no special libraries
or resource scheduler is required. In fact the compliance checker looks just like any other
java application from an operational perspective. This is in stark contrast with data processing
frameworks like Spark, which require that the processing is implemented in their own specific
framework and deployed on dedicated clusters using specific resource managers.

H2020-ICT-2016-2017
Project No. 731601

Figure 5.1: Transparency Dashboard

Chapter 5

Transparency Dashboard

This chapter covers the backend of the transparency and compliance dashboard (also referred
to as "the privacy dashboard"). Frontend / UX concerns are handled in WP4 and D4.3 Trans-
parency dashboard and control panel release V2. Figure 5.1 shows the current architecture
proposal.

5.1 Overview of Components

As can be seen in Figure 5.1, the proposal for the transparency service will consist of the fol-
lowing components

• Compliance Log: This is the output of the compliance checker and will serve as the
reference for any visualisations

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 35/91

• Elasticsearch: Elasticsearch will contain an indexed version of the compliance log and
will provide faceted browsing, easy lookups and aggregations.

• Transparency Backend: The transparency backend will act as the sole entrypoint for any
UIs built as part of deliverable 4.1. It will provide access control and enforce authorized
access to the data in Elasticsearch or the compliance log.

5.2 Current State

The version of the transparency service which is currently available, consists of the following
components:

• Compliance Log: This is the output of the compliance checker

• Transparency Backend: A service which exposes the compliance log as server sent
events, [9], to a web client

• Placeholder Dashboard: A temporary dashboard which visualises the events on the com-
pliance log in real time

These components prove that it is possible to stream a Kafka topic in real time in a web client.
Any other features expected to present in the final solution, such as access control and faceted
browsing, have not yet been implemented.

H2020-ICT-2016-2017
Project No. 731601

Chapter 6

Personal Data Inventory

As described in D2.7 Transparency Framework V2, PII1-oriented discovery tools and metadata
repositories are insufficient for GDPR compliance as they can neither deal with all personal data
types, nor correlate the discovered data to identities. SPECIAL proposes an alternative approach
to building data subject-centric digital enterprise inventories.

6.1 Personal Data Inventory Architecture

Figure 6.1 shows the SPECIAL Personal Data Inventory backend architecture. The microservice
setup involves three distinct layers which will be described further below:

• Dispatch Layer (yellow)

• Business Layer (blue)

• Data Layer (green)

6.1.1 Dispatch Layer

The dispatch layer is simple and consists of a single microservice. The dispatcher/identifier
needs to:

• add a cookie,

• add an identification header to a request if it is not present,

• remove blacklisted headers from outgoing requests, and

• dispatch requests to other microservices.
1Personally Identifiable Information

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 37/91

Figure 6.1: Personal Data Inventory backend architecture

6.1.2 Business Layer

This middle layer implements the business logic and consists of ten distinct services.
Indexer Service. The indexer service will index the entire dataset every time a dataset is

added to the catalog in Elastic Search. The created index stores a hashed representation of the
original data.

Session Service. The session service facilitates user authentication. It can take into account
3rd party OAuth services.

Golden Record Service. The golden record service handles identity samples (golden records)
for bootstrapping X-axis discovery and discovers identity shapes.

Connection Configuration Service. The connection service offers to obtain JSON API
compliant connection information and also creates connections. When it does, it also ensures
that the connection object is valid prior to storing it in the database.

Schema Service. For any given connection that is stored in the database, the schema service
analyzes the data source and stores its schema in the database. Furthermore, the schema service
will offer JSON API compliant responses on schema objects.

Filter Profiler Service. Given a connection object with a schema object, the profile service
runs a profile on that connection and adds it to the database. The service can also return profiles
as resources to the frontend consumers.

Data Service. The data service provides the frontend with small (at first, "raw") samples of
data for a given connection.

Resource Service. The resource service provides all plain resource objects that can be
consumed by the front end.

Sampler Service. The sampler service extracts a data sample for early profiling from a
cataloged data source.

Statistics Service. The statistics service returns meaningful statistics for frontend charting
libraries. The only supported statistic at the time of writing is a Sankey diagram.

KPI Service. The KPI Service can retrieve personal data inventory KPI queries from the

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 38/91

triple store and run them. Moreover, it also offers JSON API resources on the run KPI queries.

6.2 Data Layer

The data layer stores the inventory data, stored in a Lucene index, and metadata, including the
graph (RDF) representation of the data catalog and the identities.

Connector Service. The connector offers an abstraction to outside data sources for which
we want to offer specific services (e.g. get schema, get sample, or get connection info).

Triple Store. The RDF store is OpenLink Virtuoso here. The triple store is the single source
of truth.

Kafka. Events are published in Kafka topics. These topics can be subscribed to by any
interested microservice.

Elasticsearch (ES). We use Elasticsearch to index all of our data assets. Only hashes of
data and id’s are stored here.

6.3 Personal Data Inventory Gateway

In the SPECIAL-K architecture, any request for personal data would go through a personal data
gateway, which would in turn consult the inventory for relevant metadata, including ownership,
making policy compliance checking per data subject possible.

Interfacing with Line-of-Business applications will be the focus of year three research, the
results of which will be presented in D3.6 Final release.

H2020-ICT-2016-2017
Project No. 731601

Chapter 7

RDF Compression

This chapter briefly motivates and reviews the most important works on RDF compression (Sec-
tion 7.1). Then, we present our current efforts on managing compressed RDF datasets (Section
7.2) and RDF archives, i.e. versions of evolving data (Section 7.3). Our initial insights set the
basis for a new generation of compressed-based Big Semantic Data stores that can be integrated
in our SPECIAL platform to manage large and evolving semantic data at Web scale.

7.1 Compressing RDF Data

The steady adoption of Linked Data, together with the support of key open projects (such as
DBpedia, Wikidata or Bio2RDF), have promoted RDF as a de-facto standard to represent facts
about arbitrary knowledge in the Web, organized around the emerging notion of knowledge
graphs. This impressive growth in the use of RDF has irremediably led to increasingly large
RDF datasets and consequently to scalability challenges in Big Semantic Data management.

RDF is an extremely simple model where a graph is a set of triples, a ternary structure
(subject, predicate, object), which does not impose any physical storage solution. RDF data
management is traditionally based on human-readable serializations, which add unnecessary
processing overheads in the context of a large-scale and machine-understandable Web. For
instance, the latest DBpedia (2016-10) consists of more than 13 billion triples. Even though
transmission speeds and storage capacities grow, such graphs can quickly become cumbersome
to share, index and consume. This scenario calls for efficient and functional representation
formats for RDF as an essential tool for RDF preservation, sharing, and management.

RDF compression can be defined as the problem of encoding an RDF dataset using less bits
than that required by text-based traditional serialization formats like RDF/XML, NTriples,
or Turtle, among others [79]. These savings immediately lead to more efficient storage (i.e.
archival) and less transmission costs (i.e. less bits over the wire). Although this problem can
be easily solved through universal compression (e.g. gzip or bzip2), optimized RDF-specific
compressors take advantage of the particular features of RDF datasets (such as semantic re-
dundancies) in order to save more bits or to provide retrieval operations on the compressed
information.

In the following, we first review the state of the art on specific RDF compressors (Section
7.1.1). Then, we list and discuss the most important applications in the area (Section 7.1.2).

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 40/91

7.1.1 Classification of RDF compressors

RDF compressors can be classified into physical and logical: the former exploits symbolic/syn-
tactic redundancy, while the latter focuses on semantic-based redundancy. Finally, hybrid com-
pressors perform at physical and logical levels. An orthogonal view considers the functionality
of the compression scheme, where RDF self-indexes allows for efficient RDF retrieval on com-
pressed space.

RDF-specific physical compressors usually perform dictionary compression. That is, they
translate the original RDF graph into a new representation which includes an string dictionary
and an ID-graph encoding:

• The dictionary organizes the RDF vocabulary, which comprises all different terms used
in the dataset.

• The ID-graph replaces the original terms by their corresponding IDs in the dictionary.

Physical compressors propose different approaches to organize and compress RDF dictio-
naries, and to encode the corresponding ID-graph representations. Dictionary compression has
not received much particular attention, in spite that representing the RDF vocabulary usually
takes more space than the ID-graph encoding [78]. Martínez-Prieto et al. [76] proposes differ-
ent approaches to compress RDF dictionaries. Dcomp [78] is a dictionary technique that splits
the dictionary by role (subject, object and predicate) and vocabulary (URIs, blank nodes, and
literals). The resulting multi-dictionary organization allows for choosing the best compression
technique for each collection of RDF terms, reporting competitive compression ratios and en-
abling fine-grained retrieval operations to be performed.

Once removed symbol repetitions, ID-graph compression looks for syntactic redundancy
on the resulting ID-graph. These techniques model the graph in terms of adjacency lists or ma-
trices, and look for regularities or patterns, which are succinctly encoded. HDT [38] proposes
BitmapTriples, one of the pioneer approaches for (RDF) ID-graph compression. In essence,
it transforms the graph into a forest of three-level trees: each tree is rooted by a subject ID,
having its adjacency list of predicates in the second level and, for each of them, the adjacency
list of related objects in the third (leaf) level. The whole forest is then compressed using two
ID sequences (for predicates and objects), and two bitsequences which encode the number of
branches and leaves of each tree. This simple encoding reports interesting compression ra-
tios (10 − 25% of the original space), while supporting efficient triple decoding. Furthermore,
Bitmap Triples allows subject-based queries to be resolved by traversing subject trees from the
root. HDT consolidates a binary serialization format by joining FrontCoding and BitmapTriples
to compress dictionaries and ID-graphs respectively.

OFR [97] proposes another compression scheme for ID-graphs. It first performs dictionary
compression (terms are organized into a multi-dictionary using differential encoding), and the
resulting ID-graph is sorted by objects and subjects. In this case, run-length and delta com-
pression [87] are applied to exploit multiple object occurrences, and the non-decreasing order
of the consecutive subjects, respectively. OFR compressed files are then re-compressed using
universal techniques like gzip or 7zip. The resulting OFR effectiveness improves HDT, but
its inner data organization discourages any chance of efficient retrieval.

Logical compressors look for (redundant) triples that can be inferred from others. These
triples are removed from the original graph, and only the resulting canonical subgraph is finally

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 41/91

serialized. Different approaches have been followed to obtain these canonical subgraphs. The
initial approaches [61, 80] are based on the notion of lean subgraph. The lean subgraph is a
subset of the original graph that has the property of being the smallest subgraph that is instance
of the original graph. The number of removed triples by a lean subgraph strongly depends on
the graph features, but a reasonable lower limit is two removed triples per blank node [61].
Nevertheless, some triples of a lean graph can still be derived from others, hence some semantic
redundancy can still be present [80].

The rule-based (RB) compressor [62] uses mining techniques to detect objects that are com-
monly related to a particular predicate (intra-property patterns) and to group frequent predicate-
object pairs (inter-property patterns). These patterns are then used as generative rules to remove
triples that can be inferred from such patterns. RB is not so effective by itself, and only inter-
property patterns enable significant amount of triples to be removed. [100] state that frequent
patterns are not so expressive to capture semantic redundancy, and suggest that effectiveness can
be improved using more expressive rules. In this case, Horn rules are mined from the dataset,
and all triples matching their head part are removed. The resulting canonical subgraph is then
compressed using RB. This Horn-rule based compressor outperforms RB effectiveness, but it
introduces latencies in compression and decompression processes.

Hybrid compressors compact the RDF graph by first using a logical approach to remove
redundant triples, and then performing physical compression at serialization level. Although
these techniques could combine the best of logical and physical compression, their application
has received relatively little attention until now.

HDT++ [59] revisits HDT to introduce some methods to detect syntactic and semantic re-
dundancy. HDT++ brings out the inherent structure of RDF by detecting and grouping the dif-
ferent set of predicates (predicate families) used to describe subjects. The original RDF graph is
encoded as a set of subgraphs, one per predicate family. The rdf:type values are attached to
each predicate family, hence removing these triples from the subgraphs. Finally, HDT++ uses
local IDs for the terms in each subgraph, thus reducing the number of required bits. As a result,
HDT++ reduces the original HDT ID-graph space requirements up to 2 times for more struc-
tured datasets, and reports significant improvements even for highly semi-structured datasets.

The graph-pattern based (GPB) compressor [88] shares some common features with HDT++,
also grouping subjects by predicate families, called entity description patterns (EDPs). Each
EDP is encoded as a pair which includes the corresponding pattern and all instances matching
it. This policy consolidates the simplest GPB encoding scheme (LV0), but patterns are then
merged to obtain better patterns (LV1), and the merging process can be recursively performed
(LV2). GPB results are not compared with other physical compressors, but they excel at logical
level, where GPB-LV2 is able to remove more triples than RB.

In turn, RDF Self-indexes address efficient RDF retrieval on compressed space. These ap-
proaches do not just compress the ID-graph, but also provide indexing capabilities over it. HDT-
FoQ [77] enhances HDT to also support predicate and object based queries, adding inverted
indexes for predicate and object adjacency lists that, all together, provide excellent performance
for resolving SPARQL triple patterns. k2-triples [13] provides an alternative organization of the
ID-graph, encoding a (binary) adjacency matrix of (subject, object) pairs per predicate. These
matrices are very sparse and can be easily compressed using k2-trees [20]. The k2-triples ap-
proach improves HDT-FoQ compression ratios, and reports competitive numbers for all triple
patterns binding the predicate, but results in a poor performance in those queries with unbounded
predicates. This is mitigated by adding two additional indexes to store the predicates related to

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 42/91

each subject and object, but the pattern that only binds the predicate remains slow. RDFCSA
[21] is the most recent RDF self-index, which encodes the ID-graph as a Compressed Suffix
Array (CSA). RDFCSA also ensures efficient lookup performance, competing with k2-triples at
the cost of using more space.

7.1.2 Applications of RDF compressors

RDF compression has been widely adopted by the Semantic Web community as a standard
technique to reduce storage and transmission costs when downloading RDF datasets. Most of
the publishers in the Linked Open Data (LOD) cloud, make use of universal compression, given
its simplicity, usability and widespread adoption. This is particularly true for projects publishing
massive amounts of RDF data, such as DBpedia or Bio2RDF.

Nonetheless, RDF-specific compressors, and in particular RDF self-indexes, are receiving
increased attention. Projects like LOD Laundromat [16] or Triple Pattern Fragments (TPF)
[101] describe two interesting use cases exploiting compressed RDF. LOD Laundromat is an
initiative to crawl and clean (removing syntax errors) RDF data from the LOD cloud. As a re-
sult, it exposes more than 650K cleansed datasets which are delivered in HDT format and can
be queried using TPF interfaces. TPF focuses on alleviating the burden of endpoints by serv-
ing simple SPARQL triple patterns, paginating the results. This simplification allows servers to
scale, while clients can always execute more complex SPARQL queries on top of TPFs by taking
care of integrating and filtering the results. Given the simplicity of the required infrastructure
at the server, TPF interfaces can make use of RDF self-indexes to serve low-cost operations,
being HDT the most used backend in practice. The recently published LOD-a-lot dataset [41]
combines the benefits from both projects to provide a practical example of efficient manage-
ment of compressed Big Semantic Data. LOD-a-lot integrates all data from LOD Laundromat
into a cross domain mashup of more than 28 billion triples and several terabytes of space (in
NTriples). This dataset is then exposed as HDT and the corresponding TPF interface. The
queryable self-indexed HDT of such large portion of the LOD cloud takes 524 GB, and can
serve fast triple pattern resolution with an affordable memory footprint (in practice, 15.7 GB).
These numbers are a strong evidence of how RDF compression contributes to make Big Seman-
tic Data management feasible in most Linked Data servers (for online consumption) and clients
(for downloading and offline consumption).

RDF compression and self-indexes have also been actively used in other Semantic Web ar-
eas such as i) SPARQL querying and recommender systems [57, 77], leveraging the retrieval
operations supported by self-indexes to support more complex queries, ii) reasoning [25], op-
timizing the RDF dictionary and triples encoding to serve inference capabilities, iii) versioned
RDF or RDF archives [40], where RDF compression is used to preserve (and query) the his-
tory of an RDF dataset, and iv) constrained and mobile devices [63] in order to maximize the
exploitation of their storage/processing capabilities.

Finally, although it is not the focus of this review, RDF compression has also been high-
lighted by RDF stream processing systems [30, 73] (cf. [79] for a more complete survey).

In the following, we present our approach to enhance the aforementioned HDT technique
to consider RDF datasets (quads). Then, we focus on the problem of versioned RDF or RDF
archives.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 43/91

7.2 HDTQ: Managing RDF Datasets in Compressed Space

As we motivated in the previous section, HDT [38] is a compact, self-indexed serialization of
RDF that keeps big datasets compressed for RDF preservation and sharing and –at the same
time– provides basic query functionality without prior decompression. HDT has been widely
adopted by the community, (i) used as the main backend of Triple Pattern Fragments (TPF)
[101] interface, which alleviates the traditional burden of LOD servers by moving part of the
query processing onto clients, (ii) used as a storage backend for large-scale graph data [77], or
(iii) as the store behind LOD Laundromat [16], serving a crawl of a very big subset of the LOD
Cloud, to name but a few.

One of the main drawbacks of HDT so far is its inability to manage RDF datasets with
multiple RDF graphs. HDT considers that all triples belong to the same graph, the default
graph. However, triples in an RDF dataset can belong to different (named) graphs, hence the
extension to the so-called RDF quadruples (subject, predicate, object, graph), or quads. The
graph (also called context) is used to capture information such as trust, provenance, temporal
information and other annotations [106]. Since RDF 1.1 [94] there exist standard RDF syntaxes
(such as N-Quads or Trig) for representing RDF named graphs. SPARQL, with its GRAPH
keyword, allows for querying and managing RDF named graphs, which most common triple
stores have implemented. Interestingly, while RDF compression has been an active research
topic for a while now, there is neither a compact RDF serialization nor a self-indexed RDF store
for quads, to the best of our knowledge.

In the following, we present HDTQ, our current efforts on extending HDT to cope with
quads and keep its compact and queryable features. The HDTQ approach and the supporting
images presented herein have been adapted from Fernández et al. [43]. In the following, we
first review RDF concepts (Section 7.2.1) and the most important components of HDT (Section
7.2.2). Then, we present the required extensions to add and query graph information in HDT
(Section 7.2.3). Finally, we discuss the approach and our initial results (Section 7.2.7). Further
details on the current HDTQ prototype and its detailed performance analysis can be found in
Fernández et al. [43].

7.2.1 RDF preliminaries

An RDF graph G is a finite set of triples (subject, predicate, object) from (I ∪ B) × I ×
(I ∪ B ∪ L), where I , B, L denote IRIs, blank nodes and RDF literals, respectively. RDF
graphs can be grouped and managed together, conforming an RDF dataset, that is, a collec-
tion of RDF graphs [94]. Borrowing terminology from [56], an RDF dataset is a set DS =
{G, (g1, G1), . . . , (gn, Gn)} consisting of a (non-named) default graph G and named graphs
s.t. gi ∈ I are graph names. Figure 7.1 represents a dataset DS consisting of two named graphs
(aka subgraphs), graphWU and graphTU, coming from different sources (e.g. from two uni-
versities). Note that terms1 (i.e. subjects, predicates and objects) and triples can belong to
different named graphs. For instance, the triple (V ienna, locatedIn,Europe) is shared among
the two subgraphs.

An RDF quad can be seen as an extension of a triple with the graph name (aka context).
Formally, an RDF quad q from an RDF dataset DS, is a quadruple (subject, predicate, object,
gi) from (I ∪ B) × I × (I ∪ B ∪ L) × I . Note that the graph name gi can be used in other

1All terms are IRIs whose prefix, http://example.org/, has been omitted for simplicity.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 44/91

Europe

Vienna

lo
ca

te
dI

n

Helsinki

locatedIn

Budapest

loc
ate

dIn

WU Vienna
loc

ate
dIn

TU Vienna

locatedIn

Programming
of

fer
ed

AtofferedAt

Luke

takes

bornIn

Lea

teaches

bornIn

GraphWU GraphTU

Figure 7.1: An RDF dataset DS consisting of two graphs, GraphWU and GraphTU.

triples or quads to provide further meta-knowledge, e.g. the subgraph provenance. We also
note that quads and datasets (with named graphs) are in principle interchangeable in terms of
expressiveness, i.e. one can be represented by the other.

RDF graphs and datasets are traditionally queried using the well-known SPARQL [56] query
language. SPARQL is based on graph pattern matching, where the core component is the con-
cept of a triple pattern, i.e. a triple where each subject, predicate and object are RDF terms or
SPARQL variables. Formally, assuming a set V of variables, disjoint from the aforementioned
I , B and L, a triple pattern tp is a tuple from (I ∪B ∪V)× (I ∪V)× (I ∪B ∪L∪V). In turn,
SPARQL defines ways of specifying and querying by graph names (or the default graph), using
the GRAPH keyword. To capture this, following the same convention as the triple pattern, we
define a quad pattern qp as an extension of a triple pattern where also the graph name can be
provided or may be a variable to be matched. That is, a quad pattern qp is a pair tp × (I ∪ V)
where the last component denotes the graph of the pattern (an IRI or variable).

7.2.2 HDT preliminaries

HDT [38] is a compressed serialization format for single RDF graphs, which also allows for
triple pattern retrieval over the compressed data. HDT encodes an RDF graph G into three
components: the Header holds metadata (provenance, signatures, etc.) and relevant information
for parsing; the Dictionary provides a catalog of all RDF terms in G and maps each of them
to a unique identifier; and the Triple component encodes the structure of the graph after the ID
replacement. Figure 7.2 shows the HDT dictionary and triples for all RDF triples in Figure 7.1,
i.e. disregarding the name graphs.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 45/91

Figure 7.2: HDT Dictionary and Triples for a graph G (merging all triples of Fig. 7.1).

7.2.2.1 HDT Dictionary

The HDT dictionary of a graphG, denoted asDG, organizes all terms in four sections, as shown
in Figure 7.2 (a): SO includes terms occurring both as subject and object, mapped to the ID-
range [1,|SO|]. Sections S and O comprise terms that only appear as subjects or objects,
respectively. In order to optimize the range of IDs, they are both mapped from |SO|+1, ranging
up to |SO|+|S| and |SO|+|O|, respectively. Finally, section P stores all predicates, mapped
to [1,|P|]. Note that (i) no ambiguity is possible once we know the role played by the term,
and (ii) the HDT dictionary provides fast lookup conversions between IDs and terms.

7.2.2.2 HDT Triples

The Triples component of a graph G, denoted as TG, encodes the structure of the RDF graph
after ID replacement. Logically speaking, T organizes all triples into a forest of trees, one per
different subject, as shown in Figure 7.2 (b): subjects are the roots of the trees, where the middle
level comprises the ordered list of predicates associated with each subject, and the leaves list
the objects related to each (subject, predicate) pair. This underlying representation is practically
encoded with the so-called BitmapTriples approach [38], shown in Figure 7.2 (c). It comprises
two sequences: Sp and So, concatenating all predicate IDs in the middle level and all object
IDs in the leaves, respectively; and two bitsequences: Bp and Bo, which are aligned with Sp
and So respectively, using a 1-bit to mark the end of each list. Bitsequences are then indexed to
locate the 1-bits efficiently. These enhanced bitsequences are usually called bitmaps. HDT uses
Bitmap375 [49] that takes 37.5% extra space on top of the original bitsequence size.

7.2.2.3 Triple Pattern resolution with HDT

As shown, BitmapTriples is organized by subject, conforming a SPO index that can be used to
efficiently resolve subject-bounded triple pattern queries [56] (i.e. triples where the subject is
provided and the predicate and object may be a variable) as well as listing all triples. HDT-
Focused on Querying (HDT-FoQ) [77] extends HDT with two additional indexes (PSO and
OPS) to speed up the resolution of all triple patterns.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 46/91

Figure 7.3: HDTQ encoding of the dataset DS.

7.2.3 HDTQ: Adding Graph Information to HDT

This section introduces HDTQ, an extension of HDT that involves managing RDF quads. We
consider hereinafter that the original source is an RDF dataset as defined in Section 7.2.1, poten-
tially consisting of several named graphs. For simplicity, we assume that graphs have no blank
nodes in common, otherwise a re-labeling step would be possible as pre-processing.

7.2.4 Extending the HDT Components

HDT was originally designed as a flexible format that can be easily extended, e.g. to include
different dictionary and triples components or to support domain-specific applications. In the
following, we detail HDTQ and the main design decisions to extend HDT to cope with quads.
Figure 7.3 shows the final HDTQ encoding for the datasetDS in Figure 7.1. We omit the header
information, as the HDTQ extension only adds implementation-specific metadata to parse the
components.

7.2.4.1 Dictionary

In HDTQ, the previous four-section dictionary is extended by a fifth section to store all different
graph names. The IDs of the graphs are then used to annotate the presence of the triples in each
graph, further explained below. Figure 7.3 (a) shows the new HDTQ dictionary encoding for
the dataset DS. Compared to the dictionary shown in Figure 7.2, i.e. the HDT conversion of all
triples disregarding the named graphs, two comments are in order:

• The terms of all graphs are merged together in the traditional four dictionary sections,
SO, S, O, P , as explained in Section 7.2.2. This decision can potentially increase the
range of IDs w.r.t an individual mapping per graph, but it keeps the philosophy of storing
terms once, when possible.

• The graph names are organized in an independent graph section, NG (named graphs),
mapped from 1 to ng, being ng the number of graphs. Note that these terms might also
play a different role in the dataset, and can then appear duplicated in SO, S, O or P .

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 47/91

(a) Annotated Triples (b) Annotated Graphs

Figure 7.4: Annotated Triples and Annotated Graphs variants for the RDF dataset DS.

However, no ambiguity is possible with the IDs once we know the role of the term we are
searching for. In turn, the storage overhead of the potential duplication is limited as we
assume that the number of graphs is much less than the number of unique subjects and
objects. An optimization for extreme corner cases is devoted to future work.

7.2.4.2 Triples

HDTQ respects the original BitmapTriples encoding and extends it with an additional Quad In-
formation (Q) component, shown in Figure 7.3 (b). Q represents a boolean matrix that includes
(for every triple - graph combination) the information on whether a specific triple appears in a
specific graph. Formally, having a triple-ID tj (where j ∈ {1..m}, being m the total number of
triples in the dataset DS), and a graph-ID k (where k ∈ {1..ng}), the new Q component defines
a boolean function graph(tj , k) = {0, 1}, where 1 denotes that tj appears in the graph k, or 0
otherwise.

7.2.5 Quad Indexes: Graph and Triples Annotators

HDTQ proposes two approaches to realize the Q matrix, namely Annotated Triples (HDT-AT)
and Annotated Graphs (HDT-AG). They both rely on bitmaps, traditionally used in HDT (see
Section 7.2.2).

7.2.5.1 Annotated Triples

Using the Annotated Triples approach, a bitmap is assigned to each triple, marking the graphs
in which the corresponding triple is present. A dataset containingm triples in n different graphs
has {BAT

1 , · · · , BAT
m } bitmaps each of size n. Thus, if BAT

j [i] = 1, it means that the triple tj is
present in the ith graph, being BAT

j [i] = 0 otherwise. This can be seen in Figure 7.4 (a), where
11 bitmaps (one per triple) are created, each of them of two positions, corresponding to the two
graphs. In this example, the bitmap for the first triple holds {0, 1}, meaning that the first triple,
(1,2,7), only appears in the second graph, which is graphWU.

Intuitively, Annotated Triples favors quad patterns having the graph component as a variable,
like SPO?, as only a single bitmap needs to be browsed. On the other hand, if the graph is given,
like in the pattern ???G, all of the bitmaps need to be browsed.

7.2.5.2 Annotated Graphs

This approach is orthogonal to Annotated Triples: a bitmap is assigned to each graph, marking
the triples present in the corresponding graph. Thus, a dataset containingm triples in n different
graphs has {BAG

1 , · · · , BAG
n } bitmaps each of size m. Thus, if BAG

j [i] = 1, it means that the
triple ti is present in the jth graph, being BAG

j [i] = 0 otherwise. This can be seen in Figure 7.4
(b), including 2 bitmaps, each of size 11. For instance, the bitmap for the first graph, graphTU,

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 48/91

holds {0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0} meaning that it consists of the triples {t2, t3, t5, t6, t8, t9},
which can be found in the respective positions in BitmapTriples.

Compared to Annotated Triples, Annotated Graphs favors quad patterns in which the graph
is given, like ???G, as only a single bitmap (the bitmap of the given graph G) needs to be
browsed. On the other hand it penalizes patterns with graph variables, as all bitmaps need to be
browsed to answer the query.

Finally note that, both in HDT-AT and HDT-AG, depending on the data distribution, the
bitmaps can be long and sparse. However, in practice, HDT-AT and HDT-AG can be imple-
mented with compressed bitmaps [74] to minimize the size of the bitsequences.

7.2.6 Search Operations

The resolution of quad patterns in HDTQ builds on top of two operations inherently provided
by the BitmapTriples component (BT):

• BT.getNextSolution(quad, startPosition). Given a quad pattern, BT removes the last
graph term and resolves the triple pattern, outputting a pair (triple, posTriple) cor-
responding to the next triple solution and its position in BT. The search starts at the
startPosition provided, in BT. For instance, in our example in Figure 7.3, with a pattern
quad = 7???, an operation BT.getNextSolution(quad,8) will jump the first
8 triples in BT,{t1, · · · , t8}, hence the only solution is the pair ((7, 5, 3), 9) or, in other
words, t9.

• BT.getSolutionPositions(quad). This operation finds the set of triple positions where so-
lution candidates appear. In subject-bounded queries, these positions are actually a con-
secutive range {tx, .., ty} of BT. Otherwise, in queries such as ?P?G, ??OG and ?POG,
the positions are spread across BT. For instance, t2 and t5 are solutions for quad =?2?1,
but t3 and t4 do not match the pattern.

Note that we assume that the HDT-FoQ [77] indexes (PSO and OPS) are created, hence BT
can provide these operations for all patterns. In the following, we detail the resolution depending
on whether the graph term is given or it remains unbounded.

7.2.6.1 Quad Pattern Queries with Unbounded Graph

Algorithm 1 shows the resolution of quad patterns in which the graph term is not given, i.e.
????, S???, ?P??, ??O?, SP??, S?O?, ?PO? and SPO?. It is mainly based on iterating
through the solutions of the traditional HDT and, for each triple solution, returning all the graphs
associated to it. Thus, the algorithm starts by getting the first solution in BT (Line 2), using the
aforementioned operation getNextSolution. While the end of BT is not reached (Line 3), we get
the next graph associated with the current triple (Line 4), or null if it does not appear in any
further graph. This is provided by the operation nextGraph of Q, explained below. If there is a
graph associated with the triple (Line 5), both are appended to the results (Line 6). Otherwise,
we look for the next triple solution (Line 8).

The auxiliary nextGraph operation of Q returns the next graph in which a given triple ap-
pears, or null if the end is reached. Algorithm 2 shows this operation for HDT-AT. First, the
bitmap corresponding to the given triple is retrieved from Q (Line 1). Then, within this bitmap,

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 49/91

Algorithm 1: SEARCHQUADS - quad patterns with unbounded graphs
Input: BitmapTriples BT, Quad Information Q, quad pattern q
Output: The quads matching the given pattern

1 result← (); graph← 0
2 (triple, posTriple)← BT.getNextSolution(q, 0)
3 while posTriple 6= null do
4 graph← Q.nextGraph(posTriple, graph+ 1)
5 if graph 6= null then
6 result.append(triple, graph)
7 else
8 (triple, posTriple)← BT.getNextSolution(q, posTriple)
9 graph← 0

10 end
11 end
12 return result

Algorithm 2: NEXTGRAPH - AT
Input: Quad Information Q, int posTriple, int graph
Output: The position of the next graph

1 bitmap← Q[posTriple]
2 return bitmap.getNext1(graph)

Algorithm 3: NEXTGRAPH - AG
Input: Quad Information Q, int posTriple, int graph
Output: The position of the next graph

1 do
2 bitmap← Q[graph]
3 if bitmap[posTriple] = 1 then
4 return graph
5 else
6 graph← graph+ 1
7 end
8 while graph ≤ Q.size()
9 return null

Algorithm 4: SEARCHQUADSG - quad patterns with bounded graphs
Input: BitmapTriples BT, Quad Information Q, quad pattern q
Output: The quads matching the given pattern

1 graph← getGraph(q); result← ()
2 sol[]← BT.getSolutionPositions(q)
3 while !sol.isEmpty() do
4 posTripleCandidateBT ← sol.pop()
5 posTripleCandidateQT ← Q.nextTriple(posTripleCandidateBT, graph)
6 if posTripleCandidateBT = posTripleCandidateQT then
7 (triple, posTriple)← BT.getNextSolution(q, posTripleCandidateBT − 1)
8 result.append(triple, graph)
9 else

10 sol.removeLessThan(posTripleCandidateQT)
11 end
12 end
13 return result

the location of the next 1 starting with the provided graph ID is retrieved (or null if the end is
reached) and returned (Line 2). This latter is natively provided by the bitmap indexes.

Algorithm 3 shows the same process for HDT-AG. In this case, a bitmap is associated with
each graph. Thus, we iterate on graphs and access one bitmap after the other (Line 1-7). The
process ends when a 1-bit is found (Line 3), returning the graph (Line 4), or the maximum
number of graphs is reached (Line 7), returning null (Line 8).

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 50/91

7.2.6.2 Quad Pattern Queries with Bounded Graph

Algorithm 4 resolves all quad patterns where the graph is provided. To do so, the graph ID is first
retrieved from the quad pattern (Line 1). The aforementioned getSolutionPositions operation of
BT finds the triple positions in which the solutions can appear (Line 2). Then, we iterate on this
set of candidate positions until it is empty (Line 3). For each posTripleCandidateBT extracted
from the set (Line 4), we check if this position is associated with the given graph (Line 5), using
the operation nextTriple of the Q structure. This operation, omitted for the sake of concision as
it is analogous to nextGraph (see Algorithms 2 and 3), starts from posTripleCandidateBT and
returns the next triple position (posTripleCandidateQT) that is associated to the given graph.
Thus, if this position is exactly the current candidate position (Line 6), the actual triple is ob-
tained for that position (Line 7), and appended to the final resultset (Line 8). Otherwise, the
candidate position was not a valid solution (it was not related to the graph), and we can remove,
from the set of candidate solutions, all positions lesser than posTripleCandidateQT (Line 10),
given that none of them are associated to the given graph.

7.2.7 HDTQ Discussion

In this section we have presented HDTQ, an extension of HDT, a compact and queryable seri-
alization of RDF, to support RDF datasets including named graphs (quads). HDTQ considers a
new dictionary to uniquely store all different named graphs, and a new Quad Information com-
ponent to annotate the presence of the triples in each graph of the RDF dataset. Two realizations
of this component are proposed, HDT-AG and HDT-AT, and space/performance tradeoffs are
evaluated against different datasets and state-of-the-art stores.

Our initial results (see Fernández et al. [43]) show that HDTQ keeps the same HDT features,
positioned itself as a highly compact serialization for RDF quads that remains competitive in
quad pattern resolution. Our ongoing work focuses on inspecting an hybrid AT-AG strategy for
the quad information and supporting full SPARQL 1.1. on top of HDTQ. To do so, we plan
to use HDTQ as a compressed backend store within existing Big Semantic Data frameworks,
supporting the scalable needs of our SPECIAL platform.

7.3 Strategies to Evaluate the Performance of RDF Archives

There is an emerging demand on efficiently archiving and (temporal) querying different versions
of evolving semantic data. As novel archiving systems are starting to address this challenge,
foundations/standards for benchmarking RDF archives are needed to evaluate its storage space
efficiency and the performance of different retrieval operations. This section addresses this chal-
lenge, proposing novel strategies to evaluate the performance of RDF archives. The approach
in this section and the supporting images presented herein have been adapted from Fernández
et al. [45].

In the following, we first review the most common strategies to manage versioned RDF
data, i.e. RDF archives (7.3.1). We then provide theoretical foundations on the design of data
and queries to evaluate emerging RDF archiving systems (Section 7.3.2). Then, we instantiate
these foundations along a concrete set of queries on the basis of a real-world evolving datasets
(Section 7.3.3). These concepts are crystallized in BEAR, a benchmark for the evaluation of
RDF archives. Section 7.3.4 discusses the approach and our initial results. Further details on

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 51/91

Figure 7.5: Example of RDF graph versions.

Focus
Type

Materialisation
Structured Queries

Single time Cross time

Version Version Materialisation Single-version structured queries Cross-version structured queries
-get snapshot at time ti -lectures given by certain teacher

at time ti
-subjects who have played the role
of student and teacher of the same
course

Delta Delta Materialisation Single-delta structured queries Cross-delta structured queries
-get delta at time ti -students leaving a course between

two consecutive snapshots, i.e. be-
tween ti−1, ti

-largest variation of students in the
history of the archive

Table 7.1: Classification and examples of retrieval needs.

the current BEAR prototype and its evaluation results on current RDF store systems can be
found in Fernández et al. [45].

All in all, these foundations and results are meant to serve as a baseline of future develop-
ments of the SPECIAL platform, guiding the efficient management and querying of evolving
RDF data.

7.3.1 Preliminaries on RDF Archives

We briefly summarise current archiving techniques for dynamic Linked Open Data. The use case
is depicted in Figure 7.5, showing an evolving RDF graph with three versions V1, V2 and V3 :
the initial version V1 models two students ex:S1 and ex:S2 of a course ex:C1, whose professor
is ex:P1. In V2, the ex:S2 student disappeared in favour of a new student, ex:S3. Finally, the
former professor ex:P1 leaves the course to a new professor ex:P2, and the former student ex:S2
reappears also as a professor.

7.3.1.1 Retrieval Functionality

Given the relative novelty of archiving and querying evolving semantic Web data, retrieval needs
are neither fully described nor broadly implemented in practical implementations (described
below). Table 7.1 shows a first classification [39, 95] that distinguishes six different types of
retrieval needs, mainly regarding the query type (materialisation or structured queries) and the
main focus (version/delta) of the query.

Version materialisation is a basic demand in which a full version is retrieved. In fact, this is
the most common feature provided by revision control systems and other large scale archives,
such as current Web archiving that mostly dereferences URLs across a given time point.2

Single-version structured queries are queries which are performed on a specific version. One
could expect to exploit current state-of-the-art query resolution in RDF management systems,

2See the Internet Archive effort, http://archive.org/web/.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 52/91

with the additional difficulty of maintaining and switching between all versions.

Cross-version structured queries, also called time-traversal queries, must be satisfied across
different versions, hence they introduce novel complexities for query optimization.

Delta materialisation retrieves the differences (deltas) between two or more given versions.
This functionality is largely related to RDF authoring and other operations from revision control
systems (merge, conflict resolution, etc.).

Single-delta structured queries and cross-delta structured queries are the counterparts of the
aforementioned version-focused queries, but they must be satisfied on change instances of the
dataset.

7.3.1.2 Archiving Policies and Retrieval Process

Main efforts addressing the challenge of RDF archiving fall in one of the following three stor-
age strategies [39]: independent copies (IC), change-based (CB) and timestamp-based (TB)
approaches.

Independent Copies (IC) [70, 86] is a basic policy that manages each version as a different,
isolated dataset. It is, however, expected that IC faces scalability problems as static information
is duplicated across the versions. Besides simple retrieval operations such as version materiali-
sation, other operations require non-negligible processing efforts. A potential retrieval mediator
should be placed on top of the versions, with the challenging tasks of (i) computing deltas at
query time to satisfy delta-focused queries, (ii) loading/accessing the appropriate version/s and
solve the structured queries, and (iii) performing both previous tasks for the case of structured
queries dealing with deltas.

Change-based approach (CB) [33, 102, 104] partially addresses the previous scalability issue
by computing and storing the differences (deltas) between versions. For the sake of simplicity,
we focus here on low-level deltas (added or deleted triples).

A query mediator for this policy manages a materialised version and the subsequent deltas.
Thus, CB requires additional computational costs for delta propagation which affects version-
focused retrieving operations. Although an alternative policy could always keep a materialisa-
tion of the current version and store reverse deltas with respect to this latter [95], such deltas
still need to be propagated to access previous versions.

Timestamp-based approach (TB) [23, 54, 105] can be seen as a particular case of time mod-
elling in RDF, where each triple is annotated with its temporal validity. Likewise, in RDF
archiving, each triple locally holds the timestamp of the version. In order to save space avoiding
repetitions, compression techniques can be used to minimize the space overheads, e.g. using
self-indexes, such as in v-RDFCSA [23], or delta compression in B+Trees [103].

Hybrid-based approaches (HB) [85, 95, 103] combine previous policies to inspect other space/
performance tradeoffs. On the one hand, Dong-Hyuk et al. [33] and the TailR [83] archiving
system adopt a hybrid IC/CB approach (referred to as HBIC/CB hereinafter), which can be
complemented with a theoretical cost model [95] to decide when a fresh materialised version
(IC) should be computed. These costs highly depend on the difficulties of constructing and
reconstructing versions and deltas, which may depend on multiple and variable factors. On
the other hand, R43ples [51] and other practical approaches [85, 99, 103] follow a TB/CB
approach (referred to as HBTB/CB hereinafter) in which triples can be time-annotated only

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 53/91

when they are added or deleted (if present). In these practical approaches, versions/deltas are
often managed under named/virtual graphs, so that the retrieval mediator can rely on existing
solutions providing named/virtual graphs. Except for delta materialisation, all retrieval demands
can be satisfied with some extra efforts given that (i) version materialisation requires to rebuild
the delta similarly to CB, and (ii) structured queries may need to skip irrelevant triples [85].

Finally, [98] builds a partial order index keeping a hierarchical track of changes. This pro-
posal, though, is a limited variation of delta computation and it is only tested with datasets
having some thousand triples.

7.3.2 Evaluation of RDF Archives: Challenges and Guidelines

Previous considerations on RDF archiving policies and retrieval functionality set the basis of
future directions on evaluating the efficiency of RDF archives. The design of a benchmark for
RDF archives should meet three requirements:

• The benchmark should be archiving-policy agnostic both in the dataset design/genera-
tion and the selection of queries to do a fair comparison of different archiving policies.

• Early benchmarks should mainly focus on simpler queries against an increasing number
of snapshots and introduce complex querying once the policies and systems are better
understood.

• While new retrieval features must be incorporated to benchmark archives, one should
consider lessons learnt in previous recommendations on benchmarking RDF data man-
agement systems [12].

Although many benchmarks are defined for RDF stores [12, 18] (see the Linked Data Bench-
mark Council project [19] for a general overview) and related areas such as relational databases
(e.g. the well-known TPC3 and recent TPC-H and TPC-C extensions to add temporal aspects to
queries [68]) and graph databases [32], to the best of our knowledge, none of them are designed
to address these particular considerations in RDF archiving. The preliminary EvoGen [81] data
generator is one of the first attempts in this regards, based on extending the Lehigh University
Benchmark (LUBM) [53] with evolution patterns. However, the work is focused on the creation
of such synthetic evolving RDF data, and the functionality is restricted to the LUBM scenario.
Nonetheless, most of the well-established benchmarks share important and general principles.
We briefly recall here the four most important criteria when designing a domain-specific bench-
mark [52], which are also considered in our approach: Relevancy (to measure the performance
when performing typical operations of the problem domain, i.e. archiving retrieval features),
portability (easy to implement on different systems and architectures, i.e. RDF archiving poli-
cies), scalability (apply to small and large computer configurations, which should be extended
in our case also to data size and number of versions), and simplicity (to evaluate a set of easy-
to-understand and extensible retrieval features).

We next formalize the most important features to characterize data and queries to evaluate
RDF archives. These will be instantiated in the next section to provide a concrete experimental
testbed.

3http://www.tpc.org/.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 54/91

7.3.2.1 Dataset Configuration

We first provide semantics for RDF archives and adapt the notion of temporal RDF graphs by
Gutierrez et al. [54]. We make a syntatic-sugar modification to put the focus on version labels
instead of temporal labels. Note, that time labels are a more general concept that could lead to
time-specific operators (intersect, overlaps, etc.), which is complementary –and not mandatory–
to RDF archives. Let N be a finite set of version labels in which a total order is defined.

Definition 1 (RDF Archive) A version-annotated triple is an RDF triple (s, p, o) with a label
i ∈ N representing the version in which this triple holds, denoted by the notation (s, p, o) : [i].
An RDF archive graph A is a set of version-annotated triples.

Definition 2 (RDF Version) An RDF version of an RDF archive A at snapshot i is the RDF
graph A(i) = {(s, p, o)|(s, p, o) : [i] ∈ A}. We use the notation Vi to refer to the RDF version
A(i).

As basis for comparing different archiving policies, we introduce four main features to
describe the dataset configuration, namely data dynamicity, data static core, total version-
oblivious triples and RDF vocabulary.
Data dynamicity. This feature measures the number of changes between versions, considering
these differences at the level of triples (low-level deltas [104]). Thus, it is mainly described by
the change ratio and the data growth between versions. We note that there are various definitions
of change and growth metrics conceivable, and we consider our framework extensible in this
respect with other, additional metrics. At the moment, we consider the following definitions of
change ratio, insertion ratio, deletion ratio and data growth:

Definition 3 (change ratio) Given two versions Vi and Vj , with i < j, let ∆+
i,j and ∆−i,j two sets

respectively denoting the triples added and deleted between these versions, i.e. ∆+
i,j = Vj \ Vi

and ∆−i,j = Vi \ Vj . The change ratio between two versions denoted by δi,j , is defined by

δi,j = |∆+
i,j∪∆−i,j |
|Vi∪Vj | .

That is, the change ratio between two versions should express the ratio of all triples in
Vi∪Vj that have changed, i.e., that have been either inserted or deleted. In contrast, the insertion
and deletion ratios provide further details on the proportion of inserted and add triple wrt. the
original version:

Definition 4 (insertion ratio, deletion ratio) The insertion δ+
i,j = |∆+

i,j |
|Vi| and deletion δ−i,j =

|∆−i,j |
|Vi| denote the ratio of “new” or “removed” triples with respect to the original version.

Finally, the data growth rate compares the number of triples between two versions:

Definition 5 (data growth) Given two versions Vi and Vj , having |Vi| and |Vj | different triples
respectively, the data growth of Vj with respect to Vi, denoted by, growth(Vi, Vj), is defined by

growth(Vi, Vj) = |Vj |
|Vi|

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 55/91

In archiving evaluations, one should provide details on three related aspects, δi,j , δ+
i,j and

δ−i,j , as well as the complementary version data growth, for all pairs of consecutive versions.
Additionally, one important aspect of measurement could be the rate of changed triples accu-
mulated overall across non-consecutive versions. That is, as opposed to the (absolute) metrics
defined so far, which compare between the original and the final version only, here we want to
also be able to take all intermediate changes into account. To this end, we can also define an
accumulated change rate δ∗i,j between two (not necessarily consecutive) versions as follows:

Definition 6 The accumulated change ratio δ∗i,j between two versions Vi, Vj with j = i + h,
with h > 0, is defined as

δ∗i,j = Σj
k=iδk,k+1
h

The rationale here is that δ∗i,j should be 1 iff all triples changed in each version (even if eventually
the changes are reverted and Vi = Vj), 0 if Vi = Vk for each i ≤ k ≤ j, and non-0 otherwise,
i.e. measuring the accumulation of changes over time.

Note that most archiving policies are affected by the frequency and also the type of changes,
that is both absolute change metrics and accumulated change rates play a role. For instance, IC
policy duplicates the static information between two consecutive versions Vi and Vj , whereas
the size of Vj increases with the added information (δ+

i,j) and decreases with the number of
deletions (δ−i,j), given that the latter are not represented. In contrast, CB and TB approaches
store all changes, hence they are affected by the general dynamicity (δi,j).

Data static core. It measures the triples that are available in all versions:

Definition 7 (Static core) For an RDF archiveA, the static core CA = {(s, p, o)|∀i ∈ N , (s, p, o) :
[i] ∈ A}.

This feature is particularly important for those archiving policies that, whether implicitly or
explicitly, represent such static core. In a change-based approach, the static core is not repre-
sented explicitly, but it inherently conforms the triples that are not duplicated in the versions,
which is an advantage against other policies such as IC. It is worth mentioning that the static
core can be easily computed taking the first version and applying all the subsequent deletions.

Total version-oblivious triples. This computes the total number of different triples in an RDF
archive independently of the timestamp. Formally speaking:

Definition 8 (Version-oblivious triples) For an RDF archive A, the version-oblivious triples
OA = {(s, p, o)|∃i ∈ N , (s, p, o) : [i] ∈ A}.

This feature serves two main purposes. First, it points to the diverse set of triples managed by
the archive. Note that an archive could be composed of few triples that are frequently added or
deleted. This could be the case of data denoting the presence or absence of certain information,
e.g. a particular case of RDF streaming. Then, the total version-oblivious triples are in fact the
set of triples annotated by temporal RDF [54] and other representations based on annotation
(e.g. AnQL [105]), where different annotations for the same triple are merged in an annotation
set (often resulting in an interval or a set of intervals).

RDF vocabulary. In general, we cover under this feature the main aspects regarding the differ-
ent subjects (SA), predicates (PA), and objects (OA) in the RDF archive A. Namely, we put the
focus on the RDF vocabulary per version and delta and the vocabulary set dynamicity, defined
as follows:

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 56/91

Definition 9 (RDF vocabulary per version) For an RDF archive A, the vocabulary per ver-
sion is the set of subjects (SVi), predicates (PVi) and objects (OVi) for each version Vi in the
RDF archive A.

Definition 10 (RDF vocabulary per delta) For an RDF archiveA, the vocabulary per delta is
the set of subjects (S∆+

i,j
and S∆−i,j

), predicates (P∆+
i,j

and P∆−i,j
) and objects (O∆+

i,j
and O∆−i,j

)
for all consecutive (i.e., j = i+ 1) Vi and Vj in A.

Definition 11 (RDF vocabulary set dynamicity) The dynamicity of a vocabulary setK, being
K one of {S, P,O}, over two versions Vi and Vj , with i < j, denoted by vdyn(K,Vi, Vj) is
defined by

vdyn(K,Vi, Vj) =
|(KVi

\KVj
)∪(KVj

\KVi
)|

|KVi
∪KVj

| .

The vocabulary set dynamicity for insertions and deletions is defined by vdyn+(K,Vi, Vj) =
|KVj

\KVi
|

|KVi
∪KVj

| and vdyn−(K,Vi, Vj) =
|KVi

\KVj
|

|KVi
∪KVj

| respectively.

The evolution (cardinality and dynamicity) of the vocabulary is specially relevant in RDF
archiving, since traditional RDF management systems use dictionaries (mappings between terms
and integer IDs) to efficiently manage RDF graphs. Finally, whereas additional graph-based
features (e.g. in-out-degree, clustering coefficient, presence of cliques, etc.) are interesting
and complementary to our work, our proposed properties are feasible (efficient to compute and
analyse) and grounded in state-of-the-art of archiving policies.

7.3.2.2 Design of Benchmark Queries

There is neither a standard language to query RDF archives, nor an agreed way for the more
general problem of querying temporal graphs. Nonetheless, most of the proposals (such as T-
SPARQL [50], stSPARQL [17], SPARQL-ST [89] and the most recent SPARQ-LTL [46]) are
based on SPARQL modifications.

In this scenario, previous experiences on benchmarking SPARQL resolution in RDF stores
show that benchmark queries should report on the query type, result size, graph pattern shape,
and query atom selectivity [93]. Conversely, for RDF archiving, one should put the focus on
data dynamicity, without forgetting the strong impact played by query selectivity in most RDF
triple stores and query planning strategies [12].

Let us briefly recall and adapt definitions of query cardinality and selectivity [12, 14] to
RDF archives. Given a SPARQL query Q, where we restrict to SPARQL Basic Graph Patterns
(BGPs4) hereafter, the evaluation of Q over a general RDF graph G results in a bag of solu-
tion mappings [[Q]]G, where Ω denotes its underlying set. The function card[[Q]]G maps each
mapping µ ∈ Ω to its cardinality in [[Q]]G. Then, for comparison purposes, we introduce three
main features, namely archive-driven result cardinality and selectivity, version-driven result
cardinality and selectivity, and version-driven result dynamicity, defined as follows.

Definition 12 (Archive-driven result cardinality) The archive-driven result cardinality of Q
over the RDF archive A, is defined by

4Sets of triple patterns, potentially including a FILTER condition, in which all triple patterns must match.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 57/91

CARD(Q,A) =
∑
µ∈Ω card[[Q]]A(µ).

In turn, the archive-driven query selectivity accounts how selective is the query, and it is defined
by SEL(Q,A) = |Ω|/|A|.

Definition 13 (Version-driven result cardinality) The version-driven result cardinality of Q
over a version Vi, is defined by

CARD(Q,Vi) =
∑
µ∈Ωi

card[[Q]]Vi
(µ),

where Ωi denotes the underlying set of the bag [[Q]]Vi . Then, the version-driven query selectivity
is defined by SEL(Q,Vi) = |Ωi|/|Vi|.

Definition 14 (Version-driven result dynamicity) The version-driven result dynamicity of the
query Q over two versions Vi and Vj , with i < j, denoted by dyn(Q,Vi, Vj) is defined by

dyn(Q,Vi, Vj) = |(Ωi\Ωj)∪(Ωj\Ωi)|
|Ωi∪Ωj | .

Likewise, we define the version-driven result insertion dyn+(Q,Vi, Vj) = |Ωj\Ωi|
|Ωi∪Ωj | and dele-

tion dyn−(Q,Vi, Vj) = |Ωi\Ωj |
|Ωi∪Ωj | dynamicity.

The archive-driven result cardinality is reported as a feature directly inherited from tradi-
tional SPARQL querying, as it disregards the versions and evaluates the query over the set of
triples present in the RDF archive. Although this feature could be only of peripheral interest, the
knowledge of this feature can help in the interpretation of version-agnostic retrieval purposes
(e.g. ASK queries).

As stated, result cardinality and query selectivity are main influencing factors for the query
performance, and should be considered in the benchmark design and also known for the result
analysis. In RDF archiving, both processes require particular care, given that the results of
a query can highly vary in different versions. Knowing the version-driven result cardinality
and selectivity helps to interpret the behaviour and performance of a query across the archive.
For instance, selecting only queries with the same cardinality and selectivity across all version
should guarantee that the index performance is always the same and as such, potential retrieval
time differences can be attributed to the archiving policy. Finally, the version-driven result
dynamicity does not just focus on the number of results, but how these are distributed in the
archive timeline.

In the following, we introduce five foundational query atoms to cover the broad spectrum of
emerging retrieval demands in RDF archiving. Rather than providing a complete catalog, our
main aim is to reflect basic retrieval features on RDF archives, which can be combined to serve
more complex queries. We elaborate these atoms on the basis of related literature, with special
attention to the needs of the well-established Memento Framework [29], which can provide
access to prior states of RDF resources using datetime negotiation in HTTP.

Version materialisation, Mat(Q,Vi): it provides the SPARQL query resolution of the query
Q at the given version Vi. Formally, Mat(Q,Vi) = [[Q]]Vi .

Within the Memento Framework, this operation is needed to provide mementos (URI-M)
that encapsulate a prior state of the original resource (URI-R).

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 58/91

versions |V0| |V57| growth δ δ− δ+ CA OA

58 30m 66m 101% 31% 32% 27% 3.5m 376m

Table 7.2: BEAR-A Dataset configuration

Delta materialisation, Diff(Q,Vi, Vj): it provides the different results of the query Q be-
tween the given Vi and Vj versions. Formally, let us consider that the output is a pair of map-
ping sets, corresponding to the results that are present in Vi but not in Vj , that is (Ωi \ Ωj), and
viceversa, i.e. (Ωj \ Ωi).

A particular case of delta materialisation is to retrieve all the differences between Vi and Vj ,
which corresponds to the aforementioned ∆+

i,j and ∆−i,j .
Version Query, V er(Q): it provides the results of the queryQ annotated with the version label
in which each of them holds. In other words, it facilitates the [[Q]]Vi solution for those Vi that
contribute with results.

Cross-version join, Join(Q1, Vi, Q2, Vj): it serves the join between the results of Q1 in Vi,
and Q2 in Vj . Intuitively, it is similar to Mat(Q1, Vi) 1Mat(Q2, Vj).

Change materialisation, Change(Q): it provides those consecutive versions in which the
given queryQ produces different results. Formally, Change(Q) reports the labels i, j (referring
to the versions Vi and Vj)⇔ Diff(Q,Vi, Vj) 6= ∅, j = i+ 1.

Within the Memento Framework, change materialisation is needed to provide timemap in-
formation to compile the list of all mementos (URI-T) for the original resource, i.e. the basis of
datetime negotiation handled by the timegate (URI-G).

These query features can be instantiated in domain-specific query languages (e.g. DI-
ACHRON QL [82]) and existing temporal extensions of SPARQL (e.g. T-SPARQL [50], stSPARQL
[17], SPARQL-ST [89], and SPARQ-LTL [46]). An instantiation of this queries in AnQL is pro-
vided in [45].

7.3.3 BEAR: A Test Suite for RDF Archiving

This section presents BEAR, a prototypical (and extensible) test suite to demonstrate the new
capabilities in benchmarking the efficiency of RDF archives using our foundations, and to high-
light current challenges and potential improvements in RDF archiving. BEAR comprises three
main datasets, namely BEAR-A, BEAR-B, and BEAR-C, each having different characteristics.

The complete test suite (data corpus, queries, archiving system source codes, evaluation and
additional results) is available at the BEAR repository5.

7.3.3.1 BEAR-A: Dynamic Linked Data

The first benchmark we consider provides a realistic scenario on queries about the evolution of
Linked Data in practice.

Description. We build our RDF archive on the data hosted by the Dynamic Linked Data Ob-
servatory6, monitoring more than 650 different domains across time and serving weekly crawls

5https://aic.ai.wu.ac.at/qadlod/bear.
6http://swse.deri.org/dyldo/.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 59/91

 0

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 6x10
7

 7x10
7

 8x10
7

 0 10 20 30 40 50 60

#
s
tm

ts

versions

IC

diffs

added

deleted

(a) Number of statements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50 60

g
ro

w
th

/d
y
n
am

ic
it

y

versions

growth/decrease
dynamcity

add-dynamcity
del-adynamcity

(b) Relative growth and dynamicity

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50

N
u

m
b

er
 o

f
el

em
en

ts
 (

lo
g

sc
al

e)

versions

subjects
subjects added

subjects deleted

(c) Subject vocabulary

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50

N
u

m
b

er
 o

f
el

em
en

ts
 (

lo
g

sc
al

e)

versions

objects
objects added

objects deleted

(d) Object vocabulary

 1000

 10000

 100000

 0 10 20 30 40 50

N
u

m
b

er
 o

f
el

em
en

ts
 (

lo
g

sc
al

e)

versions

predicates
predicates added

predicates deleted

(e) Predicate vocabulary

Figure 7.6: Dataset description.

of these domains. BEAR data are composed of the first 58 weekly snapshots, i.e. 58 versions,
from this corpus. Each original week consists of triples annotated with their RDF document
provenance, in N-Quads format. We focus on archiving of a single RDF graph, so that we re-
move the context information and manage the resultant set of triples, disregarding duplicates.
The extension to multiple graph archiving can be seen as future work. In addition, we replaced
Blank Nodes with Skolem IRIs7 (with a prefix http://example.org/bnode/) in order to simplify
the computation of diffs.

We report the data configuration features (cf. Section 7.3.2) that are relevant for our pur-
poses. Table 7.2 lists basic statistics of our dataset, further detailed in Figure 7.6, which shows
the figures per version and the vocabulary evolution. Data growth behaviour (dynamicity) can
be identified at a glance: although the number of statement in the last version (|V57|) is more
than double the initial size (|V0|), the mean version data growth (growth) between versions is
almost marginal (101%).

A closer look to Figure 7.6 (a) allows to identify that the latest versions are highly con-
7https://www.w3.org/TR/rdf11-concepts/#section-skolemization

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 60/91

tributing to this increase. Similarly, the version change ratios8 in Table 7.2 (δ, δ− and δ+) point
to the concrete adds and delete operations. Thus, one can see that a mean of 31% of the data
change between two versions and that each new version deletes a mean of 27% of the previous
triples, and adds 32%. Nonetheless, Figure 7.6 (b) points to particular corner cases (in spite of
a common stability), such as V31 in which no deletes are present, as well as it highlights the
noticeable dynamicity in the last versions.

Conversely, the number of version-oblivious triples (OA), 376m, points to a relatively low
number of different triples in all the history if we compare this against the number of versions
and the size of each version. This fact is in line with the δ dynamicity values, stating that a mean
of 31% of the data change between two versions. The same reasoning applies for the remarkably
small static core (CA), 3.5m.

Finally, Figures 7.6 (c-e) show the RDF vocabulary (different subjects, predicates and ob-
jects) per version and per delta (adds and deletes). As can be seen, the number of different
subjects and predicates remains stable except for the noticeable increase in the latests versions,
as already identified in the number of statements per versions. However, the number of added
and deleted subjects and objects fluctuates greatly and remain high (one order of magnitude of
the total number of elements, except for the aforementioned V31 in which no deletes are present).
In turn, the number or predicates are proportionally smaller, but it presents a similar behaviour.

Test Queries. BEAR-A provides triple pattern queries Q to test each of the five atomic oper-
ations defined in our foundations (Section 7.3.2). Note that, although such queries do not cover
the full spectrum of SPARQL queries, triple patterns (i) constitute the basis for more com-
plex queries, (ii) are the main operation served by lightweight clients such as the Linked Data
Fragments [101] proposal, and (iii) they are the required operation to retrieve prior states of a
resource in the Memento Framework. For simplicity, we present here atomic lookup queries Q
in the form (S??), (?P?), and (??O), which are then extended to the rest of triple patterns (SP?),
(S?O), (?PO), and (SPO)9. For instance, Listing 7.1 shows an example of a materialization of a
basic predicate lookup query in version 3.

Listing 7.1: Materialization of a (?P?) triple pattern in version 3.
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT * WHERE {
?s dc:language ?p : 3 }
}

As for the generation of queries, we randomly select such triple patterns from the 58 versions
of the Dynamic Linked Data Observatory. In order to provide comparable results, we consider
entirely dynamic queries, meaning that the results always differ between consecutive versions.
In other words, for each of our selected queries Q, and all the versions Vi and Vj (i < j), we
assure that dyn(Q,Vi, Vj) > 0. To do so, we first extract subjects, predicates and objects that
appear in all ∆i,j .

Then, we follow the foundations and try to minimise the influence of the result cardinality on
the query performance. For this purpose, we sample queries which return, for all versions, result
sets of similar size, that is, CARD(Q,Vi) ≈ CARD(Q,Vj) for all queries and versions. We

8Note that δ = δ∗1,n, so we use them interchangeably.
9The triple pattern (???) retrieves all the information, so no sampling technique is required.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 61/91

QUERY SET lookup position CARD dyn #queries

QS
L-ε=0.2 subject 6.7 0.46 50

QP
L -ε=0.6 predicate 178.66 0.09 6

QO
L -ε=0.1 object 2.18 0.92 50

QS
H -ε=0.1 subject 55.22 0.78 50

QP
H -ε=0.6 predicate 845.3 0.12 10

QO
H -ε=0.6 object 55.62 0.64 50

Table 7.3: Overview of BEAR-A lookup queries

granularity versions |V0| |Vlast| growth δ δ− δ+ CA OA

instant 21,046 33,502 43,907 100.001% 0.011% 0.007% 0.004% 32,094 234,588
hour 1,299 33,502 43,907 100.090% 0.304% 0.197% 0.107% 32,303 178,618
day 89 33,502 43,907 100.744% 1.778% 1.252% 0.526% 32,448 83,134

Table 7.4: BEAR-B Dataset configuration

introduce here the notation of a ε-stable query, that is, a query for which the min and max result
cardinality over all versions do not vary by more than a factor of 1±ε from the mean cardinality,

i.e., max∀i∈N CARD(Q,Vi) ≤ (1 + ε) ·
∑
∀i∈N CARD(Q,Vi)

|N | and min∀i∈N CARD(Q,Vi) ≥

(1− ε) ·
∑
∀i∈N CARD(Q,Vi)

|N | .
Thus, the previous selected dynamic queries are effectively run over each version in order

to collect the result cardinality. Next, we split subject, objects and predicate queries producing
low (QSL, QPL , QOL) and high (QSH , QPH , QOH) cardinalities. Finally, we filter these sets to sample
at most 50 subject, predicate and object queries which can be considered ε-stable for a given
ε. Table 7.3 shows the selected query sets with their epsilon value, mean cardinality and mean
dynamicity. Although, in general, one could expect to have queries with a low ε (i.e. cardi-
nalities are equivalent between versions), we test higher ε values in objects and predicates in
order to have queries with higher cardinalities. Even with this relaxed restriction, the number
of predicate queries that fulfil the requirements is just 6 and 10 for low and high cardinalities
respectively.

7.3.3.2 BEAR-B: DBpedia Live

Our next benchmark, rather than looking at arbitrary Linked Data, is focused on the evolu-
tion of DBpedia, which directly reflect Wikipedia edits, where we can expect quite different
change/evolution characteristics.

Dataset Description. The BEAR-B dataset has been compiled from DBpedia Live change-
sets10 over the course of three months (August to October 2015). DBpedia Live [58] records all
updates to Wikipedia articles and hence re-extracts and instantly updates the respective DBpe-
dia Live resource descriptions. The BEAR-B contains the resource descriptions of the 100 most
volatile resources along with their updates. The most volatile resource (dbr:Deaths_in_-

10http://live.dbpedia.org/changesets/

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 62/91

2015) changes 1,305 times, the least volatile resource contained in the dataset (Once_Upon_-
a_Time_(season_5)) changes 263 times.

As dataset updates in DBpedia Live occur instantly, for every single update the dataset shifts
to a new version. In practice, one would possibly aggregate such updates in order to have less
dataset modifications. Therefore, we also aggregated these updates on an hourly and daily level.
Hence, we get three time granularities from the changesets for the very same dataset: instant
(21,046 versions), hour (1,299 versions), and day (89 versions).

Detailed characteristics of the dataset granularities are listed in Table 7.4. The dataset grows
almost continuously from 33,502 triples to 43,907 triples. Since the time granularities differ in
the number of intermediate versions, they show different change characteristics: a longer update
cycle also results in more extensive updates between versions, the average version change ratio
increases from very small portions of 0.011% for instant updates to 1.8% at the daily level.
It can also be seen that the aggregation of updates leads to omission of changes: whereas the
instant updates handle 234,588 version-oblivious triples, the daily aggregates only have 83,134
(hourly: 178,618), i. e. a reasonable number of triples exists only for a short period of time
before they get deleted again. Likewise, from the different sizes of the static core, we see that
triples which have been deleted at some point are re-inserted after a short period of time (in the
case of DBpedia Live this may happen when changes made to a Wikipedia article are reverted
shortly after).

Test Queries. BEAR-B allows one to use the same sampling methodology as BEAR-A to
retrieve dynamic queries. Nonetheless, we exploit the real-world usage of DBpedia to provide
realistic queries. Thus, we extract the 200 most frequent triple patterns from the DBpedia query
set of Linked SPARQL Queries dataset (LSQ) [92] and filter those that produce results in our
BEAR-B corpus. We then obtain a batch of 62 lookup queries, mixing (?P?) and (?PO) queries.
The full batch has a CARD=80 in BEAR-B-day and BEAR-B-hour, and CARD=54 in BEAR-
B-instant. Finally, we build 20 join cases using the selected triple patterns, such as the join in
Listing 7.2. Further statistics on each query are available at the BEAR repository.

Listing 7.2: Example of a join query in BEAR-B
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbo: <http://dbpedia.org/ontology/>
{
?film dbo:director ?director .
?director dbp:name ?name .

}

7.3.3.3 BEAR-C: Open Data portals

The third dataset is taken from the Open Data Portal Watch project, a framework that monitors
over 260 Open Data portals in a weekly basis and performs a quality assessment. The framework
harvests the dataset descriptions in the portals and converts them to their DCAT representation.
We refer to [84] for more details.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 63/91

granularity versions |V0| |Vlast| growth δ δ− δ+ CA OA

portal 32 485,179 563,738 100.478% 67.617% 33.671% 33.946% 178,484 9,403,540

Table 7.5: BEAR-C Dataset configuration

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

#
s
tm

ts

versions

IC

diffs

added

deleted

(a) Number of statements

0

1

 0 5 10 15 20 25 30 35

g
ro

w
th

/d
y
n
am

ic
it

y

versions

growth/decrease
dynamcity

add-dynamcity
del-adynamcity

(b) Relative growth and dynamicity

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

N
u

m
b

er
 o

f
el

em
en

ts
 (

lo
g

sc
al

e)

versions

subjects
subjects added

subjects deleted

(c) Subject vocabulary

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

N
u

m
b

er
 o

f
el

em
en

ts
 (

lo
g

sc
al

e)

versions

objects
objects added

objects deleted

(d) Object vocabulary

 1

 10

 100

 0 5 10 15 20 25 30

N
u

m
b

er
 o

f
el

em
en

ts
 (

lo
g

sc
al

e)

versions

predicates
predicates added

predicates deleted

(e) Predicate vocabulary

Figure 7.7: Dataset description.

Dataset Description. For BEAR-C, we decided to take the datasets descriptions of the Euro-
pean Open Data portal11 for 32 weeks, or 32 snapshots respectively. Table 7.5 and Figure 7.7
show the main characteristics of the dataset. Each snapshot consists of roughly 500m triples
with a very limited growth as most of the updates are modifications on the metadata, i.e. adds
and deletes report similar figures as shown in Figure 7.7 (a-b). Note also that this dynamicity is
also reflected in the subject and object vocabulary (Figures 7.7 (c-d)), whereas the metadata is
always described with the same predicate vocabulary (Figure 7.7 (e)), in spite of a minor mod-
ification in version 24 and 25. Note that, as in BEAR-A, we also replaced Blank Nodes with
Skolem IRIs.

11http://data.europa.eu/euodp/en/data/

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 64/91

Test Queries. Selected triple patterns in BEAR-A cover queries whose dynamicity is well-
defined, hence it allows for a fine-grained evaluation of different archiving strategies (and par-
ticular systems). In turn, BEAR-B adopts a realistic approach and gather real-word queries from
DBpedia. Thus, we provide complex queries for BEAR-C that, although they cannot be resolved
in current archiving strategies in a straightforward and optimized way, they could help to foster
the development and benchmarking of novel strategies and query resolution optimizations in
archiving scenarios.

With the help of Open Data experts, we created 10 queries that retrieve different information
from datasets and files (referred to as distributions, where each dataset refers to one or more
distributions) in the European Open Data portal. For instance, Q1 in Listing 7.3 retrieves all the
datasets and their file URLs. See the BEAR repository for the full list of queries12.

Listing 7.3: BEAR-C Q1: Retrieve portals and their files.
PREFIX dcat: <http://www.w3.org/ns/dcat#>
{
?dataset rdf:type dcat:Dataset .
?dataset dcat:distribution ?distribution .
?distribution dcat:accessURL ?URL .

}

7.3.4 Discussion

RDF archiving is still in an early stage of research. Novel solutions have to face the additional
challenge of comparing the performance against other archiving policies or storage schemes,
as there is not a standard way of defining neither a specific data corpus for RDF archiving nor
relevant retrieval functionalities.

In this section we have presented foundations to guide future evaluation of RDF archives,
which can guide the implementation of future versions of the SPECIAL platform. First, we
formalized dynamic notions of archives, allowing to effectively describe the data corpus. Then,
we described the main retrieval facilities involved in RDF archiving, and have provided guide-
lines on the selection of relevant and comparable queries. We provide a concrete instantiation
of archiving queries and instantiate our foundations in a prototypical benchmark suit, BEAR,
composed of three real-world and well-described data corpus and query testbeds. Our prototyp-
ical evaluation (see Fernández et al. [45] for further details) considers different state-of-the-art
archiving policies, using independent copies (IC), change-based (CB), timestamp (TB) and hy-
brid (HB) approaches, and stores (Jena TDB, HDT, v-RDFCSA, TailR, R43ples).

Our initial results clearly confirm challenges (in terms of scalability) and strengths of current
archiving approaches, and highlight the influence of the number of versions and the dynamicity
of the dataset in order to select the right strategy (as well as an input for hybrid approaches
in order to decide when and how to materialize a version), guiding future developments. In
particular, in terms of space, CB, TB and hybrid policies (such as TB/CB in R43ples and IC/CB
in TailR) achieve better results than IC in less dynamic datasets, but they are penalized in highly
dynamic datasets due to index overheads. In this case, the TB policy reports overall good space

12Note that queries are provided as group graph pattern, such that they can be integrated in the AnQL notation.
BEAR-C queries intentionally included UNION and OPTIONAL to extend the application beyond Basic Graph
Patterns.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 65/91

figures but it can be penalized at increasing number of versions. Regarding query resolution
performance, the evaluated archiving policies excel at different operations but, in general, the
IC, TB and CB/TB policies show a very constant behaviour, while CB and IC/CB policies
degrade if more deltas have to be queried. Results also show that specific functional RDF
compression techniques such as HDT and RDFCSA emerge as promising solutions for RDF
archiving in terms of space requirements and query performance. These valuable insights can
be then integrated in future versions of the SPECIAL platform.

H2020-ICT-2016-2017
Project No. 731601

Chapter 8

Encryption

This chapter briefly motivates and reviews the most important works on RDF encryption. Fol-
lowing on from this we present two different proposals for encrypting RDF data, once based
on functional encryption and the based on symmetric encryption. The adaption of the existing
SPECIAL platform to cater for encrypted RDF data will form part of the final SPECIAL release.

8.1 Encrypting RDF Data

Encryption techniques for RDF have received very little attention to date, with work primarily
focusing on the partial encryption of RDF data, the querying of encrypted data and the signing
of RDF graphs.

Giereth [48] demonstrate how public-key encryption can be used to partially encryption
RDF fragments (i.e. subjects, objects, or predicates). The ciphertext and the corresponding
metadata (algorithm, key, hash etc...) are represented using a literal that they refer to as an en-
cryption container. When only the object is encrypted, the object part of the triple is replaced
with a blanknode (i.e. an anonymous resource) and a new statement is created with the blan-
knode as the subject, the encryption container as the object and a new renc:encNLabel
predicate (cf. Figure 8.1). The treatment of encrypted subjects is analogous. The encrpytion
of predicates is a little more difficult, as reification (a technique used to make statements about
resources) is needed to associate the new blanknode with the relevant subject, object and en-
cryption container.

Rather than simply storing the encrypted data and metadata in a literal, Gerbracht [47] dis-
cuss now the metadata can be represented using multiple triples using their crypto ontology. The
encrypted element or subgraph is replaced with a new unique identifier and new statements are
added for the encrypted data and the corresponding metadata (cf. Figure 8.2).

Kasten et al. [65] in turn focus on querying encrypted data. In the proposed framework each
triple is encrypted eight times according to the eight different triple pattern binding possibilities.
The proposed approach allows for graph pattern queries to be executed over the ciphertext, at
the cost of storing multiple ciphers for each statement. An alternative approach by Fernández
et al. [42] demonstrates how functional encryption can be used to generate query keys based
on triple patterns, whereby each key can decrypt all triples that match the corresponding triple
pattern. While, other work by Kasten et al. [66] investigates enabling the signing of graph data
at different levels of granularity.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 67/91

:JBloggs

“xfx....hhg” renc:encNLabel

“Bloggs”

“Joe”foaf:givenName
foaf:lastName

foaf:Person
rdf:type

:salary

Figure 8.1: Partially Encrypted RDF graph

:JBloggs

crypto:equal

crypto:rs
a

crypto:204
8

cryp
to:a

lgor
ithmcrypto:k

eyLengt
h

“Bloggs”

“Joe”foaf:givenName
foaf:lastName

foaf:Person
rdf:type

“zhk....kjg” crypto:_87439

Figure 8.2: Partially Encrypted RDF graph and Metadata

The approach and the supporting images presented in this section have been adapted from
Kirrane [69].

8.2 Fine-grained Encryption for RDF

In this section, we discuss how functional encryption can be used together with RDF patterns
to encryption RDF data in a very flexible manner. The approach and the supporting imaged
presented herein have been adapted from Fernández et al. [42]. Common public-key encryption
schemes usually follow an all-or-nothing approach (i.e., given a particular decryption key, a ci-
phertext can either be decrypted or not) which in turn requires users to manage a large amount
of keys, especially if there is a need for more granular data encryption [11]. Recent advances
in public-key cryptography, however, have led to a new family of encryption schemes called
Functional Encryption (FE) which addresses aforementioned issue by making encrypted data
self-enforce its access restrictions, hence, allowing for fine-grained access over encrypted infor-
mation. In a functional encryption scheme, each decryption key is associated with a boolean
function and each ciphertext is associated with an element of some attribute space Σ; a de-
cryption key corresponding to a boolean function f is able to decrypt a particular ciphertext
associated with I ∈ Σ iff f(I) = 1. A functional encryption scheme is defined as a tuple of
four distinct algorithms (Setup, Enc, KeyGen, Dec) such that:

Setup is used for generating a master public and master secret key pair.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 68/91

Enc encrypts a plaintext message m given the master public key and an element I ∈ Σ. It
returns a ciphertext c.

KeyGen takes as input the master secret key and generates a decryption key (i.e., secret key)
SKf for a given boolean function f .

Dec takes as input a secret key SKf and a ciphertext c. It extracts I from c and computes f(I).

In this section, we propose a flexible and dynamic mechanism for securely storing and
efficiently querying RDF datasets. By employing an encryption strategy based on Functional
Encryption (FE) in which controlled data access does not require a trusted mediator, but is
instead enforced by the cryptographic approach itself, we allow for fine-grained access control
over encrypted RDF data while at the same time reducing the administrative overhead associated
with access control management.

8.2.1 A Functional Encryption Scheme for RDF

While there exist various different approaches for realising functional encryption schemes, we
build upon the work of Katz et al. [67] in which functions correspond to the computation of
inner-products over ZN (for some large integer N). In their construction, they use Σ = ZnN
as set of possible ciphertext attributes of length n and F = {f~x|~x ∈ ZnN} as the class of
decryption key functions. Each ciphertext is associated with a (secret) attribute vector ~y ∈ Σ
and each decryption key corresponds to a vector ~x that is incorporated into its respective boolean
function f~x ∈ F where f~x(~y) = 1 iff

∑n
i=1 yixi = 0.

In the following, we discuss how this encryption scheme can be utilised (i.e., its algorithms
adopted1) to provide fine-grained access over encrypted RDF triples. Thus, allow for querying
encrypted RDF using triple patterns such that a particular decryption key can decrypt all triples
that satisfy a particular triple pattern (i.e., one key can open multiple locks). For example, a
decryption key generated from a triple pattern (?,p,?) should be able to decrypt all triples
with p in the predicate position.

8.2.1.1 Encrypting RDF Triples (Enc)

To be able to efficiently encrypt large RDF datasets, we adopt a strategy commonly used in
public-key infrastructures for securely and efficiently encrypting large amounts of data called
Key Encapsulation [71]. Key encapsulation allows for secure but slow asymmetric encryption
to be combined with simple but fast symmetric encryption by using asymmetric encryption
algorithms for deriving a symmetric encryption key (usually in terms of a seed) which is subse-
quently used by encryption algorithms such as AES [27] for the actual encryption of the data.
We illustrate this process in Figure 8.3.

Thus, to encrypt an RDF triple t = (s, p, o), we first compute its respective triple vector (i.e.,
attribute vector) ~yt and functionally encrypt (i.e., compute Enc as defined in [67]) a randomly
generated seed mt using ~yt as the associated attribute vector. Triple vector ~yt where ~yt =
(ys, y′s, yp, y′p, yo, y′o) for triple t is constructed as follows, where σ denotes a mapping function
that maps a triple’s subject, predicate, and object value to elements in ZN :

yl := −r · σ(l), y′l := r, with l ∈ {s, p, o} and random r ∈ ZN
Table 8.1 illustrates the construction of a triple vector ~yt based on RDF triple t.

1The Setup algorithm remains unchanged.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 69/91

TRIPLE t TRIPLE VECTOR ~yt

t1 = (s1,p1,o1) ~yt1 = (−r1 · σ(s1), r1,−r2 · σ(p1), r2,−r3 · σ(o1), r3)
t2 = (s2,p2,o2) ~yt2 = (−r4 · σ(s2), r4,−r5 · σ(p2), r5,−r6 · σ(o2), r6)

.
tn = (sn,pn,on) ~ytn = (−r3n−2 · σ(sn), r3n−2,−r3n−1 · σ(pn), r3n−1,−r3n · σ(on), r3n)

Table 8.1: Computing the triple vector ~yt of an RDF triple t.

FE AES
mt

~yt t

t̂ ct = 〈t̂, m̂t〉〈t, ~yt〉
m̂t

Encryption

Figure 8.3: Process of encrypting an RDF triple t.

We use AES to encrypt the actual plaintext triple t with an encryption key derivable from
our previously generated seed mt and return both, the resulting AES ciphertext of t denoted by
t̂ and the ciphertext of the seed denoted by m̂t as final ciphertext triple ct = 〈t̂, m̂t〉.

8.2.1.2 Generating Decryption Keys (KeyGen)

As outlined above, decryption keys must be able to decrypt all triples that satisfy their inherent
triple pattern (i.e., one query key can open multiple locks). In order to compute a decryption
key based on a triple pattern tp = (s, p, o) with s, p, and o either bound or unbound, we define
its corresponding vector ~x as ~xtp = (xs, x′s, xp, x′p, xo, x′o) with:

if l is bound: xl := 1, x′l := σ(l), with l ∈ {s, p, o}
if l is not bound: xl := 0, x′l := 0, with l ∈ {s, p, o}

Again, σ denotes a mapping function that maps a triple pattern’s subject, predicate, and
object value to elements in ZN . Table 8.2 illustrates the construction of a query vector ~xtp that
corresponds to a triple pattern tp.

TRIPLE PATTERN tp QUERY VECTOR ~xtp

tp1 = (?,?,?) ~xtp1 = (0, 0, 0, 0, 0, 0)
tp2 = (s2,?,?) ~xtp2 = (1, σ(s2), 0, 0, 0, 0)
tp3 = (s3,p3,?) ~xtp3 = (1, σ(s3), 1, σ(p3), 0, 0)

.
tpn = (sn,pn,on) ~xtpn = (1, σ(sn), 1, σ(pn), 1, σ(on))

Table 8.2: Computing the query vector ~xtp that corresponds to a triple pattern tp

8.2.1.3 Decryption of RDF Triples (Dec)

To verify whether an encrypted triple can be decrypted with a given decryption key, we com-
pute the inner-product of their corresponding triple vector ~yt and query vector ~xtp, with t =

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 70/91

(st, pt, ot) and tp = (stp, ptp, otp):

~yt · ~xtp = ystxstp + y′st
x′stp

+ yptxptp + y′pt
x′ptp

+ yotxotp + y′ot
x′otp

Only when ~yt · ~xtp = 0 is it possible to decrypt the encrypted seed m̂t, hence the corre-
sponding symmetric AES key can be correctly derived and the plaintext triple t be returned.
Otherwise (i.e., ~yt · ~xtp 6= 0), an arbitrary seed m′ 6= mt is generated hence encrypted triple ct
cannot be decrypted [75].

8.2.2 Optimising Query Execution over Encrypted RDF

The secure data store holds all the encrypted triples, i.e. {ct1 , ct2 , · · · , ctn}, being n the total
number of triples in the dataset. Besides assuring the confidentiality of the data, the data store
is responsible for enabling the querying of encrypted data.

In the most basic scenario, since triples are stored in their encrypted form, a user’s query
would be resolved by iterating over all triples in the dataset, checking whether any of them
can be decrypted with a given decryption key. Obviously, this results in an inefficient process at
large scale. As a first improvement one can distribute the set of encrypted triples among different
peers such that decryption could run in parallel. In spite of inherent performance improvements,
such a solution is still dominated by the available number of peers and the – potentially large
– number of encrypted triples each peer would have to process. Current efficient solutions
for querying encrypted data are based on (a) using indexes to speed up the decryption process
by reducing the set of potential solutions; or (b) making use of specific encryption schemes
that support the execution of operations directly over encrypted data [31]. Our solution herein
follows the first approach, whereas the use of alternative and directly encryption mechanisms
(such as homomorphic encryption [90]) is complementary and left to future work.

In our implementation of such a secure data store, we first encrypt all triples and store them
in a key-value structure, referred to as an EncTriples Index, where the keys are unique integer
IDs and the values hold the encrypted triples (see Figure 8.4 and Figure 8.5 (right)). Note
that this structure can be implemented with any traditional Map structure, as it only requires
fast access to the encrypted value associated with a given ID. In the following, we describe
two alternative approaches, i.e., one using three individual indexes and one based on Vertical
Partitioning (VP) for finding the range of IDs in the EncTriples Index which can satisfy a
triple pattern query. In order to maintain simplicity and general applicability of the proposed
store, both alternatives consider key-value backends, which are increasingly used to manage
RDF data [24], especially in distributed scenarios. It is also worth mentioning that we focus
on basic triple pattern queries as (i) they are the cornerstone that can be used to build more
complex SPARQL queries, and (ii) they constitute all the functionality to support the Triple
Pattern Fragments [101] interface.

8.2.2.1 3-Index Approach.

Following well-known indexing strategies, such as from CumulusRDF [72], we use three key-
value B-Trees in order to cover all triple pattern combinations: SPO, POS and OSP Indexes.
Figure 8.4 illustrates this organisation. As can be seen, each index consists of a Map whose
keys are the securely hashed (cf. PBKDF2 [64]) subject, predicate, and object of each triple,
and values point to IDs storing the respective ciphertext triples in the EncTriples Index.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 71/91

Key:SPO Value:ID
(h(s1), h(p1), h(o3)) 1
(h(s1), h(p3), h(o2)) 2
(h(s2), h(p2), h(o1)) 3

.

(h(sx), h(py), h(oz)) n

Key:POS Value:ID
(h(p1), h(o3), h(s1)) 1
(h(p2), h(o1), h(s2)) 3
(h(p3), h(o2), h(s1)) 2

.

(h(py), h(oz), h(sx)) n

Key:OSP Value:ID
(h(o1), h(s2), h(p2)) 3
(h(o2), h(s1), h(p3)) 2
(h(o3), h(s1), h(p1)) 1

.

(h(oz), h(sx), h(py)) n

Key:ID Value:Enc. Triple
1 c(s1,p1,o3)

2 c(s1,p3,o2)

3 c(s2,p2,o1)

.

n c(sx,py,oz)

SPO Index

POS Index

OSP Index

EncTriples
Index

Figure 8.4: 3-Index approach for indexing and retrieval of encrypted triples.

Algorithm 5 shows the resolution of a (s,p,o) triple pattern query using the 3-Index
approach. First, we compute the secure hashes h(s), h(p) and h(o) from the corresponding
s, p and o provided by the user (Line 1). Our hash(s, p, o) function does not hash unbounded
terms in the triple pattern but treats them as a wildcard ’?’ term (hence all terms will be retrieved
in the subsequent range queries). Then, we select the best index to evaluate the query (Line 2).
In our case, the SPO Index serves (s,?,?) and (s,p,?) triple patterns, the POS Index

satisfies (?,p,?) and (?,p,o), and the OSP Index index serves (s,?,o) and (?,?,o).
Both (s,p,o) and (?,?,?) can be solved by any of them. Then, we make use of the selected
index to get the range of values where the given h(s), h(p), h(o) (or ’anything’ if the
wildcard ’?’ is present in a term) is stored (Line 3). Note that this search can be implemented
by utilising B-Trees [26, 91] for indexing the keys. For each of the candidate ID values in
the range (Line 4), we retrieve the encrypted triple for such ID by searching for this ID in the
EncTriples Index (Line 5). Finally, we proceed with the decryption of the encrypted triple
using the key provided by the user (Line 6). If the status of such decryption is valid (Line 7)
then the decryption was successful and we output the decrypted triples (Line 8) that satisfy the
query.

Thus, the combination of the three SPO, POS and OSP Indexes reduces the search space of
the query requests by applying simple range scans over hashed triples. This efficient retrieval
has been traditionally served through tree-based map structures guaranteeing log(n) costs for
searches and updates on the data, hence we rely on B-Tree stores for our practical materialisa-
tion of the indexes. In contrast, supporting all triple pattern combinations in 3-Index comes
at the expense of additional space overheads, given that each (h(s),h(p),h(o)) of a triple
is stored three times (in each SPO, POS and OSP Indexes). Note, however, that this is a typi-
cal scenario for RDF stores and in our case the triples are encrypted and stored just once (in

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 72/91

Algorithm 5: 3-Index_Search(s,p,o,key)
1 (h(s), h(p), h(o))← hash(s, p, o); index← selectBestIndex(s, p, o); .

index = {SPO|POS|OSP} IDs[]← index.getRangeV alues(h(s), h(p), h(o));
for each (id ∈ IDs) do

2 encryptedTriple← EncTriples.get(id);
< decryptedTriple, status >← Decrypt(encryptedTriple, key); if
(status = valid) then

3 output(decryptedTriple);
4 end
5 end

EncTriples Index).

8.2.2.2 Vertical Partitioning Approach.

Vertical partitioning [10] is a well-known RDF indexing technique motivated by the fact that
usually only a few predicates are used to describe a dataset [37]. Thus, this technique stores
one “table” per predicate, indexing (S,O) pairs that are related via the predicate. In our case,
we propose to use one key-value B-Tree for each h(p), storing (h(s),h(o)) pairs as keys,
and the corresponding ID as the value. Similar to the previous case, the only requirement is
to allow for fast range queries on their map index keys. However, in the case of an SO index,
traditional key-value schemes are not efficient for queries where the first component (the sub-
ject) is unbound. Thus, to improve efficiency for triple patterns with unbounded subject (i.e.
(?,py,oz) and (?,?,oz)), while remaining in a general key-value scheme, we duplicate the
pairs and introduce the inverse (h(o),h(s)) pairs. The final organisation is shown in Figure
8.5 (left), where the predicate maps are referred to as Pred_h(p1), Pred_h(p2),..., Pred_h(pn)

Indexes. As depicted, we add "so" and "os" keywords to the stored composite keys in order
to distinguish the order of the key.

Algorithm 6 shows the resolution of a (s,p,o) triple pattern query with the VP organisa-
tion. In this case, after performing the variable initialisation (Line 1) and the aforementioned
secure hash of the terms (Line 2), we inspect the predicate term h(p) and select the corre-
sponding predicate index (Line 3), i.e., Pred_h(p). Nonetheless, if the predicate is unbounded,
all predicate indexes are selected as we have to iterate through all tables, which penalises the
performance of such queries. For each predicate index, we then inspect the subject term (Lines
5-9). If the subject is unbounded (Line 5), we will perform a ("os",h(o),?) range query
over the corresponding predicate index (Line 6), otherwise we execute a ("so",h(s),h(o))
range query. Note that in both cases the object could also be unbounded. The algorithm iterates
over the candidates IDs (Lines 10-end) in a similar way to the previous cases, i.e., retrieving
the encrypted triple from EncTriples Index (Line 11) and performing the decryption (Lines
12-14).

Overall, VP needs less space than the previous 3-Index approach, since the predicates are
represented implicitly and the subjects and objects are represented only twice. In contrast, it
penalises the queries with unbound predicate as it has to iterate through all tables. Nevertheless,
studies on SPARQL query logs show that these queries are infrequent in real applications [15].

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 73/91

Key:{SO|OS} Value:ID
("so",h(s1), h(o3)) 1
("os",h(o3), h(s1)) 1

.

Key:{SO|OS} Value:ID
("so",h(s2), h(o1)) 3
("os",h(o1), h(s2)) 3

.

Key:{SO|OS} Value:ID
("so",h(sx), h(oz)) n
("os",h(oz), h(sx)) n

.

Key:ID Value:Enc. Triple
1 c(s1,p1,o3)

2 c(s1,p3,o2)

3 c(s2,p2,o1)

.

n c(sx,py,oz). . .

Pred_h(p1)
Index

Pred_h(p2)
Index

Pred_h(pn)
Index

EncTriples
Index

Figure 8.5: Vertical Partitioning (VP) approach for indexing and retrieval of en-
crypted triples.

Algorithm 6: VerticalPartitioning_Search(s,p,o,key)
1 IDs[]← (); (h(s), h(p), h(o))← hash(s, p, o);

Indexes[]← selectPredIndex(h(p)); .
Indexes ⊆ {Pred_h(p1), · · · , P red_h(pn)Index} for each (index ∈ Indexes) do

2 if (s =?) then
3 IDs[]← index.getRangeV alues(”os”, h(o), ?);
4 else
5 IDs[]← index.getRangeV alues(”so”, h(s), h(o));
6 end
7 for each (id ∈ IDs) do
8 encryptedTriple← EncTriples.get(id);

< decryptedTriple, status >← Decrypt(encryptedTriple, key); if
(status = valid) then

9 output(decryptedTriple);
10 end
11 end
12 end

8.2.2.3 Protecting the Structure of Encrypted Data.

The proposed hash-based indexes are a cornerstone for boosting query resolution performance
by reducing the encrypted candidate triples that may satisfy the user queries. The use of secure
hashes [64] assures that the terms cannot be revealed but, in contrast, the indexes themselves
reproduce the structure of the underlying graph (i.e., the in/out degree of nodes). However, the
structure should also be protected as hash-based indexes can represent a security risk if the data
server is compromised. State-of-the-art solutions (cf., [31]) propose the inclusion of spurious
information, that the query processor must filter out in order to obtain the final query result.

In our particular case, this technique can be adopted by adding dummy triple hashes into

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 74/91

the indexes with a corresponding ciphertext (in EncTriples Index) that cannot be decrypted
by any key, hence will not influence the query results. Such an approach ensures that both the
triple hashes and their corresponding ciphertexts are not distinguishable from real data.

8.3 HDTcrypt: Extending HDT for Encryption

The publication and interchange of RDF datasets online has experienced significant growth
in recent years, promoted by different but complementary efforts, such as Linked Open Data,
the Web of Things and RDF stream processing systems. However, the current Linked Data
infrastructure does not cater for the storage and exchange of sensitive or private data. On the
one hand, data publishers need means to limit access to confidential data (e.g. health, financial,
personal, or other sensitive data). On the other hand, the infrastructure needs to compress RDF
graphs in a manner that minimises the amount of data that is both stored and transferred over
the wire. In this section, we discuss how HDT – a compressed serialization format for RDF –
can be extended to cater for supporting encryption. We propose a number of different graph
partitioning strategies and discuss the benefits and tradeoffs of each approach. The approach
and the supporting images presented herein have been adapted from Fernandez et al. [44].

We introduce HDTcrypt, an extension of HDT that involves encryption of RDF graphs. We
first define the notion of access-restricted RDF datasets and the implications for HDT (Section
8.3.1). Then, we show an extension of the HDT header component to cope with access-restricted
RDF datasets (Section 8.3.2), which leads to the final HDTcrypt encoding. Finally, as HDTcrypt

can manage several HDT Dictionary components, we describe the required operations to inte-
grate different Dictionary components within an HDT collection (Section 8.3.3). These oper-
ations will be the basis to represent the shared components between access-restricted datasets
efficiently, addressed in Section 8.3.4.

8.3.1 Representing access-restricted RDF datasets

We consider hereinafter that users wishing to publish access-restricted RDF datasets divide
their complete graph of RDF triples G into (named) graphs, that are accessible to other users,
i.e. we assume that access rights are already materialised per user group in the form of a set
(cover) of separate, possibly overlapping, RDF graphs, each of which are accessible to different
sets of users.

Borrowing terminology from [55], an access restricted RDF dataset (or just “dataset” in
the following) is a set DS = {G, (g1, G1), . . . , (gn, Gn)} consisting of a (non-named) default
graph G and named graphs s.t. gi ∈ I are graph names, where in our setting we require that
{G1, . . . , Gn} is a cover2 of G. We further call DS a partition of G if Gi ∩ Gj = ∅ for
any i 6= j; 1 ≤ i, j ≤ n. Note that from any dataset DS, a canonical partition DS′ can
be trivially constructed (but may be exponential in size) consisting of all non-empty (at most
2n − 1) subsets G′S of triples t ∈ G corresponding to an index set S ∈ 21,...,i such that G′S =
{t | t ∈

⋂
i∈S Gi ∧ ¬∃S′ : (S′ ⊃ S ∧ t ∈

⋂
j∈S′ Gj)}.

Figure 8.6 shows an example of such a dataset composed of three access-restricted sub-
graphs (or just “subgraphs” in the following) G1, G2, G3 for a full graph G. Intuitively, this
corresponds to a scenario with three access rights: users who can access general information
about projects in an organisation (graph G1); users who have access to public email accounts

2In the set-theoretic sense.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 75/91

Figure 8.6: An access-restricted RDF dataset such that G comprises three separate access-
restricted subgraphsG1,G2,G3; the graph’s canonical partition is comprised of four non-empty
subgraphs G′1, G

′
2, G

′
3, G

′
23, whereas the terms in these graphs can be partitioned into five non-

empty subsets corresponding to the dictionaries D′1, D
′
2, D

′
3, D

′
23, D

′
123.

and relations between members in the organisation (graph G2); and finally, users who can view
personal information of members, such as the salary and personal email accounts (graph G3).
As can be seen, the triple (ex:Alice foaf:mbox "alice@example.org") is repeated in subgraphs
G2 and G3, showing a redundancy which can produce significant overheads in realistic scenar-
ios with large-scale datasets and highly overlapping graphs. Canonical partitioning groups these
triples into disjoint sets so that no repetitions are present. In our example in Figure 8.6, the set
G′{2,3}, which can simply be written as G′23, holds this single triple, (ex:Alice foaf:mbox "al-
ice@example.org"), hence this triple is not present in G′2 and G′3. In this simple scenario, G′1
is equivalent to G1 as it does not share triples with other graphs.

Thus, we consider hereinafter an HDT collection corresponding to a dataset DS denoted by
HDT (DS) = (H,D, T) as a single H , plus sets D = {D1, . . . , Dn}, T = {T1, . . . , Tm} of
dictionary and triple components, respectively, such that the union of triple components encodes
a cover of G, i.e. the overall graph of all triples in the dataset DS. We do not assume that there
is a one-to-one correspondence between individual triple components in T and graphs in DS;
different options of mapping subgraphs to HDT components will be discussed in Section 8.3.4
below. The relation between the dictionaries and the triple components (in other words, which
dictionaries are used to codify which triple components) is also flexible and must be specified
through metadata properties. In our case, we assume H = {R,M} to contain a relation R ⊆
D × T , which we call the dictionary-triples map with the implicit meaning that dictionary
components encode terms used in the corresponding triple components, and M is comprised of
additional header metadata (as mentioned above, the header contains a variety of further (meta-
)information in standard HDT [36], which we skip for the considerations herein). It is worth
noting that we do not prescribe that either D or T do not overlap. However, it is clear that one
should find an unambiguous correspondence to decode the terms under ids(T).

Thus, we define the following admissibility condition for R. An HDT collection is called
admissible if:

• ∀Di, Dj ∈ D : (Di, T), (Dj , T) ∈ R ∧ i 6= j =⇒ terms(Di) ∩ terms(Dj) = ∅

• ∀T ∈ T : i ∈ ids(T) =⇒ ∃(D,T) ∈ R ∧ i ∈ ids(D)

For any admissible HDT collection HDT we define the T -restricted collection HDT T as
the collection obtained from removing: (i) all triple components T ′ 6= T from HDT ; (ii) the

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 76/91

Figure 8.7: HDTcrypt−A, create and encrypt one HDT per partition.

corresponding D′ such that (D′, T ′) is in R and (D′, T) is not in R; and (iii) the relations
(D′, T ′) from R. Thus allowing an HDT collection to be filtered by erasing all dictionary and
triple components that are not required for T .

8.3.2 HDTcrypt encoding

We now introduce the final encoding of theHDTcrypt extension. HDTcrypt uses AES (Advanced
Encryption Standard) [28] to encrypt theD and triple components of an HDT collection and ex-
tends the header H with a keymap kmap : Dcrypt ∪ Tcrypt 7→ I that maps encrypted components
to identifiers (IRIs), which denote AES keys that can be used to decrypt these components.

Thus, HDTcrypt = (H,Dcrypt, Tcrypt) where H = {R, kmap,M}, R ⊆ Dcrypt × Tcrypt, and
the components in Dcrypt and Tcrypt are encrypted with keys identified in kmap.

The operations to encrypt and decrypt the dictionary and triples are described as fol-
lows. First, the operation encrypt takes one or more dictionary and triples and encrypts the
components with a given key. Formally, we write encrypt(c, keycrypt) = ccrypt, where c ∈
D ∪ T to denote the component ccrypt ∈ Dcrypt ∪ Tcrypt obtained by encrypting c with the key
keycrypt. While, we add an identifier of the components to the header metadata. In other words,
id(ccrypt) 7→ IRI(keycrypt) is added to the kmap, where id denotes the ID of the component in
Dcrypt and Tcrypt and IRI a unique identifier for the symmetric key.

For the decryption, it is assumed that an authorized user u has partial knowledge about these
keys, i.e. they have access to a partial function keyu : Iu 7→ K that maps a finite set of “user-
owned” key IDs Iu ⊆ I to the set of AES (symmetric) keys K. The decryption simply takes
the given compressed component(s) and performs the decryption with the given symmetric key.
Formally, we write decrypt(ccrypt, keycrypt) = c, where ccrypt ∈ Dcrypt ∪ Tcrypt to denote the
component c ∈ D∪T obtained from decrypting ccrypt with the key keycrypt = key(kmap(ccrypt)).
Further we write decrypt(HDTcrypt, Iu) to denote the non-encrypted HDT collection consisting
of all decrypted dictionary and triple components of HDTcrypt which can be decrypted with the
keys in {keyu(i) | i ∈ Iu}. In other words, the T -restriction ofHDTcrypt is defined analogously
to the above-said.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 77/91

8.3.3 Integration operations

Finally, we define two different ways of integrating dictionaries D1, . . . , Dk ∈ D within an
HDT collection: D-union and D-merge. In the former, we replace dictionaries with a new
dictionary that includes the union of all terms. In the latter, we establish one of the dictionaries
as the dictionary baseline and rename the IDs of the other dictionaries.

8.3.3.1 D-union

The D-union is only defined for D1, . . . , Dk ⊆ D if the following condition holds on R:
∀(Di, T) ∈ R : (¬∃Dj 6∈ D1, . . . , Dk such that (Dj , T) ∈ R). In other words, we can perform
a D-union if all T -components depending on dictionaries in the set D1, . . . , Dk only depend
on these dictionaries. Then, we can define a trivial D-union of HDT wrt. D1, . . . , Dk, written
HDTD1∪...∪Dk

, as follows:
• replace {D1, . . . , Dk} dictionaries with a single dictionary D1...k = D1 ∪ . . . ∪Dk, such

that ∀x ∈ terms(D1) ∪ . . . ∪ terms(Dk)
– x ∈ terms(D1...k)
– id(x,D1...k) is obtained by sequentially numbering the terms in terms(D1)∪ . . .∪
terms(Dk) upon an (arbitrary) total order, e.g., lexicographically ordering the terms
(as it is done in HDT dictionaries by default).

• replace all (Di, T) ∈ R, i ∈ {1, . . . , k}, with new (D1...k, T
′) relations, where T ′ is

obtained from T by replacing the original IDs from Di with their corresponding new IDs
in D1...k.

8.3.3.2 D-merge

In the more general case where the condition for D-unions does not hold on D1, . . . , Dk ⊆ D,
we can define another operation, D-merge, written HDTD1.....Dk

. We start with the binary
case, where only two dictionaries D1 and D2 are involved; HDTD1.D2 is obtain as follows:

• replace D1 and D2 with a single D12 = D1 . D2,3 such that
– ∀x ∈ terms(D1) : id(x,D12) = id(x,D1)
– ∀x ∈ terms(D2) \ terms(D1) : id(x,D12) = id(x,D2) +max(ids(D1))

• replace all (D1, T1) ∈ R with (D12, T1)
• replace all (D2, T2) ∈ R with (D12, T

′
2), where T ′2 is obtained from T2 by analogous ID

changes.
D-merge can then be trivially generalized to a sequence of dictionaries assuming left-associativity
of . operator. That is, HDTD1.D2.....Dk

= HDT((D1.D2)....).Dk
.

For convenience, we extend the notation of T (G,D) from Section 7.2.2.2 to D-unions and
D-merges: let (D1, . . . , Dk) be a sequence of dictionaries and G an RDF graph such that
terms(G) =

⋃
Di∈(D1,...,Dk) terms(Di). Then we will write T (G, (D1 ∪ . . . ∪ Dk)) and

T (G, (D1 Dk)) for the triples part generated from G according to the combined dic-
tionary ((D1 ∪D2) ∪ . . .) ∪Dk and ((D1 . D2)) . Dk respectively. Finally, we note that
for any admissible HDT collection, both D-union and D-merge preserve admissibility.

3We use the directed operator . instead of ∪ here, since this operation is not commutative.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 78/91

Figure 8.8: HDTcrypt−B , extracting non-overlapping triples.

8.3.4 Efficient Partitioning HDTcrypt

After having introduced the general idea of HDTcrypt and the two different ways of integrating
dictionaries within an HDT collection, we now discuss four alternatives strategies that can be
used for distributing a dataset DS across dictionary and triple components in an HDTcrypt col-
lection. These alternatives, hereinafter referred to as HDTcrypt−A, HDTcrypt−B , HDTcrypt−C
and HDTcrypt−D, provide different space/performance tradeoffs that are evaluated in Fernandez
et al. [44]. We note that HDT behaves differently than the normal RDF merge regarding blank
nodes in different “partitions” as, by default, HDT does not rename the blank nodes to avoid
shared labels [60]: the original blank nodes are skolemized to constants (unique per RDF graph)
and preserved across partitions, so that we do not need to consider blank node (re-)naming sep-
arately.

8.3.4.1 HDTcrypt−A: A Dictionary and Triples per Named Graph in DS

The baseline approach is straightforward, we construct separate HDT components Di = D(Gi)
and Ti = T (Gi, Di) per graph Gi in the dataset, see Figure 8.7, thereafter each of these com-
ponents is encrypted with a respective, separate key, identified by a unique IRI idi ∈ I , i.e.,
kmap(Di) = kmap(Ti) = idi and R = {(Di, Ti) | Gi ∈ DS}. For re-obtaining graph Gi a
user must only have access to the key corresponding to idi, and can thereby decrypt Di and Ti
and extract the restricted collectionHDT Ti , which corresponds toGi. Obviously, this approach
encodes a lot of overlaps in both dictionary and triples parts: that is, for our running example
from Figure 8.7, the IRI for ex:alice is encoded in each individual D component and the over-
lapping triples in graphs G2 and G3 appear in both T2 and T3 respectively (cf., Figure 8.7).

8.3.4.2 HDTcrypt−B: Extracting non-overlapping Triples in DS′

In order to avoid the overlaps in the triple components, a more efficient approach could be to
split the graphs in the datasetDS according to their canonical partitionDS′ and again construct
separate (D,T)-pairs for each subset G′S ∈ DS′, see Figure 8.8. That is, we create D′S =
D(G′S) and T ′S = T (G′S , D′S) per graph G′S ∈ DS′, where S ∈ 21,...,i denotes the index set
corresponding to a (non-empty) subset of DS′. R in turn contains pairs (D′S , T ′S) and kmap
entries for keys identified by I ′S per G′S used for the encryption/decryption of the relevant D′S
and T ′S . The difference for decryption now is that any user who is allowed access to Gi must
have all keys corresponding to any I ′S such that i ∈ S in order to re-obtain the original graph
Gi.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 79/91

First, the user will decrypt all the components for which they have keys, i.e. obtaining a non-
encrypted collection HDT ′ consisting of components D′ = {D′1, . . . , D′k}, T ′ = {T ′1, . . . , T ′k}
consisting of the components corresponding to a partition of Gi. Then, for decompressing the
original graph Gi, we create separate T ′S-restricted HDTs, which are decompressed separately,
with GS being the union of the resulting subgraphs.

Figure 8.9: HDTcrypt−C , extracting non-overlapping dictionaries.

Figure 8.10: Union of dictionaries (in HDTcrypt−C) to codify the non-overlapping dictionaries
of a partition.

8.3.4.3 HDTcrypt−C: Extracting non-overlapping Dictionaries in DS′

Note that in the previous approach, we have duplicates in the dictionary components. An alter-
native strategy would be to create a canonical partition of terms instead of triples, and create
separate dictionaries D′S ∈ D′ for each non-empty term-subset,4 respectively. Figure 8.9 shows
the canonical partition of terms in our running example: as can be seen, the original dictionary
is split into five non-empty terms-subsets corresponding to the dictionaries D′123 (terms shared
in all three graphs), D′23 (terms shared in graphs G2 and G3 that are not in D′123) and D′1, D′2,
D′3 (terms in either G1, G2 or G3 resp. and are not shared between graphs). This partition can
be computed efficiently, thanks to the HDT dictionary D of the full graph G, which we assume
to be available5. To do so, we keep6 an auxiliary bitsequence per graph Gi (see Figure 8.9,

4Again, here S ∈ 21,...,n represents an index set.
5All HDTcrypt strategies are evaluated from an existing full graph G. Our evaluation in Fernandez et al. [44]

also reports the time to create the HDT representation of the full graph G
6This auxiliary structure is maintained just at compression time and it is not shipped with the encrypted informa-

tion.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 80/91

top left), each of size terms(D). Then, we iterate through triples in each graph Gi and, for
each term, we search its ID in D, marking such position with a 1-bit in the bitsequence of Gi.
Finally, the dictionaries of the subsets can be created by inspecting the combinations of 1-bits
in the bitsequences: terms in D′xy···z will be those with a 1-bit in the bitsequences of graphs
xy · · · z and 0-bits in other graphs. For instance, in Figure 8.9, D′123 is constituted only by
ex:alice, because it is the only term with three 1-bits in the bitsequences of G1, G2 and G3. In
contrast, ex:Project1 will be part of D′1 as it has a 1-bit only in the bitsequence of G1.

The number of triple components in this approach are as in HDTcrypt−A, one per graph Gi.
However, they are constructed slightly differently as, in this case, we have a canonical partition
of terms and one user will just receive the dictionaries corresponding to subsets that correspond
to terms in the graph Gi that they have been granted access to. In other words, the IDs used in
each Ti should unambiguously correspond to terms, but these terms may be distributed across
several dictionaries.7 Thus, we encode triples with aD-union (see Section 8.3.3) of theD′S such
that i ∈ S. That is, for each Gi we construct Ti = T (Gi, (

⋃
i∈S D

′
S)), and add the respective

pairs (D′S , Ti) in R.
Figure 8.10 illustrates this merge of dictionaries for the graph G1 and the respective con-

struction of T (G1, (D′1 ∪D′123)). The decompression process after decryption is the exact op-
posite. For decompressing the graphGi, the decrypted dictionaries

⋃
i∈S D

′
S are used to create a

D-union Di which can be used to decompress the triples Ti in one go. Finally, as a performance
improvement at compression time, note that, although the canonical partition of terms has to be
built to be shipped in the compressed output, we can actually skip the creation of the D-union
dictionaries to encode the IDs in the triples. To do so, we make use of the bitsequences to get
the final IDs that are used in the triples: One should note that the ID of a term in a D-union of
a graph Gi is the number of previous 1-bits in the bitsequence of Gi (for each SO, S, O, and P
section). For instance, in our example in Figure 8.10, ex:Project1 is encoded with the ID=2.
Instead of creating D1, we can see that in the bitsequence of G1 (see Figure 8.9, top right) we
have two 1-bits in the predicate section up to the position where ex:Project1 is stored in the
original dictionary, hence its ID=2.

Figure 8.11: HDTcrypt−D, extracting non-overlapping dictionaries and triples.

8.3.4.4 HDTcrypt−D: Extracting non-overlapping Dictionaries and Triples in DS′

In HDTcrypt−D, we combine the methods of both HDTcrypt−B and HDTcrypt−C . That is, we
first create a canonical partition of terms as in HDTcrypt−C , and a canonical partition of triples
DS′ as in HDTcrypt−B . Then, we codify the IDs in the subsets of DS′ with the IDs from
the dictionaries. Note, however, that in this case there is – potentially – an n:m between the

7Given the partition definition, it is nonetheless true that a term appears in one and only one term-subset.

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 81/91

Figure 8.12: Merge of dictionaries (in HDTcrypt−D) to codify the non-overlapping dictionaries
and triples of a partition.

resulting dictionary and triple components. In other words, triples in T ′S can include terms that
are not only in D′S as they may be distributed across several term-subsets. For instance, in
our running example, T ′1 in HDTcrypt−B includes ex:Alice (see Figure 8.8) which is stored in
D′123 in HDTcrypt−C (see Figure 8.9). One alternative could be to create a D-union of each
graph G′S and codify triples in T ′S with the corresponding IDs. However, it is trivial to see that
this would lead to an exponential number of D-union dictionaries, one per T ′S component. In
addition, we would need to physically recreate all these dictionaries at compression time, and
also at decompression time in order to decompress each single graph G′S . Thus, we perform a
D-merge approach (see the definition in Section 8.3.3), which fits perfectly with n:m-relations.
This is illustrated in Figure 8.11. As can be seen, triples in each G′S of the canonical partition
are encoded with an appropriate D-merge of term-subsets. A practical example is shown in
Figure 8.12, representing the encoding of graph G′3. As defined in D-merge, IDs are assigned
in order, that is for a merge D′1 D

′
k, the IDs in D′k are shifted max(ids(D′1)) + . . . +

max(ids(D′k−1)). For instance, in our example, the predicate ex:salary will be encoded in
G′3 with the ID=2, because its local ID in D′3 is 1, and it has to be shifted max(ids(D′123)) +
max(ids(D′23)) = 1, hence its final ID= 1+max(ids(D′123))+max(ids(D′23)) = 2. Note that
here we restrict the dictionaries D′ per section (SO, S, O and P). Given the special numbering
of IDs in HDT, where S and O IDs follow from SO as explained in Section 7.2.2.1. This is
illustrated in our example, e.g. the object “30K” with local ID=1 in D′3 is mapped in the D-
merge dictionary with 4, as it sums up all the previous objects and subjects IDs in D′123 and
D′23.

It is worth mentioning that no ambiguity is present in the order of the D-merge as it is im-
plicitly given by the partition DS′ as per the canonical term partition. Thus, the decompression
follows the opposite process: for each graph T ′S in the partition of the graph Gi, the user pro-
cesses each ID and, depending of the value, they get the associated term in an appropriate term
subset. For instance, if the user is accessing the predicate ID=2 in our example, one can easily

H2020-ICT-2016-2017
Project No. 731601

D3.4: Transparency & Compliance Release 82/91

see that 2 > |P123| + |P23|, so dictionary D′3 has to be used8. The local ID to look at is then
2− |P123| − |P23| = 1, hence the predicate ID=1 in D′3 is inspected and then foaf:pastProject
is retrieved. Finally, note that not all terms in a D-merge are necessarily used when encoding
a particular T ′S . For instance, in our example in Figure 8.12, the object “bob@example.org”
with ID=2 in D′23 (and ID=3 in the D-merge) is not used in T ′3. However, this ID is “blocked”:
it cannot be used by a different object in T ′3 as this ID is taken into account when encoding the
present objects (“30K” and “personal@example.org”), once we sum the max(ids(D′23)) as
explained above. The same consequence applies to subjects, so that subject IDs are not nec-
essarily correlative in T ′S . This constitutes a problem for the HDT Bitmap Triples encoding
(presented in Section 7.2.2.2), given that it represents subjects implicitly assuming that they are
correlative. Thus, HDTcrypt−D has to explicitly state the ID of each subject, which constitutes a
space overhead and a drawback of this approach, despite the fact that duplicate terms and triples
are avoided. Technically, instead of a forest of trees, triples are codified as tuples of three IDs,
using an existing HDT triples representation called Plain Triples [36].

8We abuse notation to denote the cardinality of a set, e.g. |P123|, as the maximum id represented in such dictio-
nary set.

H2020-ICT-2016-2017
Project No. 731601

Chapter 9

Discussion

This deliverable gives an insight into the current state of the SPECIAL-K architecture, high-
lighting the changes with respect to compliance checking, consent management, personal data
inventory, compression, encryption, and performance improvements. As explained earlier, not
all choices are final, and some problems will be tackled in D3.6 Final Release, including the
challenge of interfacing with Line of Business applications.

Optimizations with respect to data handling in in the compliance checker are expected to
lead to significant improvements in terms of performance. This will be demonstrated in D3.5
Scalability and Robustness Testing Report V2.

H2020-ICT-2016-2017
Project No. 731601

Bibliography

[1] Apache kafka. URL https://kafka.apache.org/.

[2] Big data europe. URL https://www.big-data-europe.eu/.

[3] Docker compose, . URL https://docs.docker.com/compose/.

[4] Docker swarm mode, . URL https://docs.docker.com/engine/swarm/.

[5] keycloak. URL https://www.keycloak.org/.

[6] Rfc 6749: The oauth 2.0 authorization framework. URL https://tools.ietf.
org/html/rfc6749.

[7] Openid connect core 1.0. URL https://openid.net/specs/
openid-connect-core-1_0.html.

[8] Rethinkdb. URL https://rethinkdb.com.

[9] Server sent events. URL https://developer.mozilla.org/en-US/docs/
Web/API/Server-sent_events/Using_server-sent_events.

[10] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic web data
management using vertical partitioning. In Proc. of Very Large Data Bases, pages 411–
422, 2007.

[11] M. Abdalla, F. Bourse, A. D. Caro, and D. Pointcheval. Simple functional encryption
schemes for inner products. In Proc. of the 18th International Conference on Practice
and Theory in Public-Key Cryptography, pages 733–751, 2015.

[12] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified Stress Testing of RDF data
management systems. In Proc. of ISWC, pages 197–212, 2014.

[13] S. Álvarez-García, N. Brisaboa, J. D. Fernández, M. A. Martínez-Prieto, and G. Navarro.
Compressed Vertical Partitioning for Efficient RDF Management. Knowledge and Infor-
mation Systems, 44(2):439–474, 2014.

[14] M. Arenas, C. Gutierrez, and J. Pérez. On the Semantics of SPARQL. Semantic Web
Information Management, pages 281–307, 2009.

[15] M. Arias, J. D. Fernández, M. A. Martínez-Prieto, and P. de la Fuente. An empirical
study of real-world sparql queries. arXiv preprint arXiv:1103.5043, 2011.

H2020-ICT-2016-2017
Project No. 731601

https://kafka.apache.org/
https://www.big-data-europe.eu/
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://www.keycloak.org/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://rethinkdb.com
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events

D3.4: Transparency & Compliance Release 85/91

[16] W. Beek, L. Rietveld, H. R. Bazoobandi, J. Wielemaker, and S. Schlobach. LOD Laun-
dromat: A Uniform Way of Publishing other People’s Dirty Data. In 13th International
Semantic Web Conference (ISWC), pages 213–228, 2014.

[17] K. Bereta, P. Smeros, and M. Koubarakis. Representation and Querying of Valid Time of
Triples in Linked Geospatial Data. In Proc. of ESWC, pages 259–274. 2013.

[18] C. Bizer and A. Schultz. The Berlin SPARQL benchmark. Int. J. Semantic Web Inf. Syst,
5(2):1–24, 2009.

[19] P. Boncz, I. Fundulaki, A. Gubichev, J. Larriba-Pey, and T. Neumann. The linked data
benchmark council project. Datenbank-Spektrum, 13(2):121–129, 2013.

[20] N. Brisaboa, S. Ladra, and G. Navarro. Compact Representation of Web Graphs with
Extended Functionality. Information Systems, 39(1):152–174, 2014.

[21] N. Brisaboa, A. Cerdeira-Pena, Farińa, and G. Navarro. A Compact RDF Store Using
Suffix Arrays. In 22nd International Symposium on String Processing and Information
Retrieval (SPIRE), pages 103–115, 2015.

[22] R. Broeckerlmann. When to use which (oauth2) grants and (oidc) flows,
2017. URL https://medium.com/@robert.broeckelmann/
when-to-use-which-oauth2-grants-and-oidc-flows-ec6a5c00d864.

[23] A. Cerdeira-Pena, A. Farina, J. D. Fernández, and M. A. Martınez-Prieto. Self-indexing
rdf archives. In Proc. of DCC, 2016.

[24] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A. Haque, A. Harth, F. L. Kepp-
mann, D. Miranker, J. F. Sequeda, and M. Wylot. NoSQL databases for RDF: an empiri-
cal evaluation. In Proc. of International Semantic Web Conference, pages 310–325, 2013.

[25] O. Cure, H. Naacke, T. Randriamalala, and B. Amann. LiteMat: a Scalable, Cost-
Efficient Inference Encoding Scheme for Large RDF Graphs. In 2015 IEEE International
Conference on Big Data (Big Data), pages 1823–1830, 2015.

[26] P. da Rocha Pinto, T. Dinsdale-Young, M. Dodds, P. Gardner, and M. J. Wheelhouse.
A simple abstraction for complex concurrent indexes. In Proc. of Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 845–864, 2011.

[27] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, 2002.

[28] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Information Security and Cryptography. Springer, 2002. ISBN 3-540-
42580-2. doi: 10.1007/978-3-662-04722-4. URL https://doi.org/10.1007/
978-3-662-04722-4.

[29] H. V. de Sompel, R. Sanderson, M. L. Nelson, L. Balakireva, H. Shankar, and
S. Ainsworth. An HTTP-Based Versioning Mechanism for Linked Data. In Proc. of
LDOW, 2010.

H2020-ICT-2016-2017
Project No. 731601

https://medium.com/@robert.broeckelmann/when-to-use-which-oauth2-grants-and-oidc-flows-ec6a5c00d864
https://medium.com/@robert.broeckelmann/when-to-use-which-oauth2-grants-and-oidc-flows-ec6a5c00d864
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4

D3.4: Transparency & Compliance Release 86/91

[30] N. B. Déme, A. F. Dia, A. Boly, Z. Kazi-Aoul, and R. Chiky. An Efficient Approach for
Real-Time Processing of RDSZ-Based Compressed RDF Streams. In 15th International
Conference on Software Engineering Research, Management and Applications (SERA),
pages 147–166, 2017.

[31] S. D. C. di Vimercati, S. Foresti, G. Livraga, and P. Samarati. Practical techniques build-
ing on encryption for protecting and managing data in the cloud. In The New Code-
breakers - Essays Dedicated to David Kahn on the Occasion of His 85th Birthday, pages
205–239, 2016.

[32] D. Dominguez-Sal, N. Martinez-Bazan, V. Muntes-Mulero, P. Baleta, and J. L. Larriba-
Pey. A discussion on the design of graph database benchmarks. In Performance Eval-
uation, Measurement and Characterization of Complex Systems, pages 25–40. Springer,
2010.

[33] I. Dong-Hyuk, L. Sang-Won, and K. Hyoung-Joo. A Version Management Framework
for RDF Triple Stores. Int. J. Softw. Eng. Know., 22(1):85–106, 2012.

[34] L. Engineering. Running kafka at scale, 2015. URL https://engineering.
linkedin.com/kafka/running-kafka-scale.

[35] N. Engineering. Kafka inside keynote pipeline, 2016.
URL https://medium.com/netflix-techblog/
kafka-inside-keystone-pipeline-dd5aeabaf6bb.

[36] J. Fernández, M. Martínez-Prieto, C. Gutiérrez, and A. Polleres. Binary RDF Represen-
tation for Publication and Exchange (HDT). W3C Member Submission, 2011. doi: 10.
1016/j.websem.2013.01.002. URL https://www.w3.org/Submission/HDT/.

[37] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias. Binary
RDF representation for publication and exchange (HDT). J. Web Sem., 19:22–41, 2013.

[38] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias. Binary
RDF Representation for Publication and Exchange. Journal of Web Semantics, 19:22–41,
2013.

[39] J. D. Fernández, A. Polleres, and J. Umbrich. Towards Efficient Archiving of Dynamic
Linked Open Data. In Proc. of DIACHRON, 2015. URL http://dataweb.infor.
uva.es/wp-content/uploads/2015/04/diachron2015.pdf.

[40] J. D. Fernández, J. Umbrich, A. Polleres, and M. Knuth. Evaluating Query and Stor-
age Strategies for RDF Archives. In 12th International Conference on Semantic System
(SEMANTiCS), pages 41–48, 2016.

[41] J. D. Fernández, W. Beek, M. A. Martínez-Prieto, and M. Arias. LOD-a-lot - A Queryable
Dump of the LOD Cloud. In 16th International Semantic Web Conference (ISWC), vol-
ume 2, pages 75–83, 2017.

[42] J. D. Fernández, S. Kirrane, A. Polleres, and S. Steyskal. Self-enforcing access control for
encrypted rdf. In European Semantic Web Conference, pages 607–622. Springer, 2017.

H2020-ICT-2016-2017
Project No. 731601

https://engineering.linkedin.com/kafka/running-kafka-scale
https://engineering.linkedin.com/kafka/running-kafka-scale
https://medium.com/netflix-techblog/kafka-inside-keystone-pipeline-dd5aeabaf6bb
https://medium.com/netflix-techblog/kafka-inside-keystone-pipeline-dd5aeabaf6bb
https://www.w3.org/Submission/HDT/
http://dataweb.infor.uva.es/wp-content/uploads/2015/04/diachron2015.pdf
http://dataweb.infor.uva.es/wp-content/uploads/2015/04/diachron2015.pdf

D3.4: Transparency & Compliance Release 87/91

[43] J. D. Fernández, M. A. Martínez-Prieto, A. Polleres, and J. Reindorf. Hdtq: Managing rdf
datasets in compressed space. In European Semantic Web Conference, pages 191–208.
Springer, 2018.

[44] J. D. Fernandez, S. Kirrane, A. Polleres, and S. Steyskal. Hdt crypt:
Compression and encryption of rdf datasets. Semantic Web Journal,
2019. URL http://semantic-web-journal.net/content/
hdt-crypt-compression-and-encryption-rdf-datasets#. In press.

[45] J. D. Fernández, J. Umbrich, A. Polleres, and M. Knuth. Evaluating
Query and Storage Strategies for RDF Archives. Semantic Web Journal,
2019. URL http://www.semantic-web-journal.net/content/
evaluating-query-and-storage-strategies-rdf-archives-0.
In press.

[46] V. Fionda, M. W. Chekol, and G. Pirrò. Gize: A time warp in the web of data. In Proc.
of ISWC, 2016.

[47] S. Gerbracht. Possibilities to Encrypt an RDF-Graph. In Proc. of Information and Com-
munication Technologies: From Theory to Applications, pages 1–6, 2008.

[48] M. Giereth. On Partial Encryption of RDF-Graphs. In Proc. of International Semantic
Web Conference, volume 3729, pages 308–322, 2005.

[49] R. González, S. Grabowski, V. Mäkinen, and G. Navarro. Practical Implementation of
Rank and Select Queries. In Proc. of WEA, pages 27–38, 2005.

[50] F. Grandi. T-SPARQL: A TSQL2-like Temporal Query Language for RDF. In Proc. of
ADBIS, pages 21–30. 2010.

[51] M. Graube, S. Hensel, and L. Urbas. R43ples: Revisions for triples. In Proc. of LDQ,
volume CEUR-WS 1215, paper 3, 2014.

[52] J. Gray. Benchmark handbook: for database and transaction processing systems. Morgan
Kaufmann Publishers Inc., 1992.

[53] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base systems. Web
Semantics: Science, Services and Agents on the World Wide Web, 3(2):158–182, 2005.

[54] C. Gutierrez, C. Hurtado, and A. Vaisman. Introducing Time into RDF. IEEE T. Knowl.
Data En., 19(2):207–218, 2007.

[55] S. Harris and A. Seaborne. SPARQL 1.1 Query Language. W3C recomm., W3C, 2013.
URL http://www.w3.org/TR/sparql11-query/.

[56] S. Harris, A. Seaborne, and E. Prud’hommeaux. SPARQL 1.1 Query Language, W3C
Recommendation, 2013. URL https://www.w3.org/TR/sparql11-query/.

[57] B. Heitmann and C. Haye. SemStim at the LOD-RecSys 2014 Challenge. In Semantic
Web Evaluation Challenge (SemWebEval), pages 170–175, 2014.

H2020-ICT-2016-2017
Project No. 731601

http://semantic-web-journal.net/content/hdt-crypt-compression-and-encryption-rdf-datasets#
http://semantic-web-journal.net/content/hdt-crypt-compression-and-encryption-rdf-datasets#
http://www.semantic-web-journal.net/content/evaluating-query-and-storage-strategies-rdf-archives-0
http://www.semantic-web-journal.net/content/evaluating-query-and-storage-strategies-rdf-archives-0
http://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

D3.4: Transparency & Compliance Release 88/91

[58] S. Hellmann, C. Stadler, J. Lehmann, and S. Auer. DBpedia Live extraction. In On
the Move to Meaningful Internet Systems: OTM 2009, volume 5871, pages 1209–1223.
Springer, 2009.

[59] A. Hernández-Illera, M. A. Martínez-Prieto, and J. D. Fernández. Serializing RDF in
Compressed Space. In 21th Data Compression Conference (DCC), page 363–372, 2015.

[60] A. Hogan, M. Arenas, A. Mallea, and A. Polleres. Everything You Always Wanted to
Know About Blank Nodes. Journal of Web Semantics (JWS), pages 42–69, 2014. doi:
10.2139/ssrn.3199109.

[61] L. Iannone, I. Palmisano, and D. Redavid. Optimizing RDF Storage Removing Redun-
dancies: An Algorithm. In 18th International Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Expert Systems (IEA/AIE), pages 732–742,
2005.

[62] A. Joshi, P. Hitzler, and G. Dong. Logical Linked Data Compression. In 10th Extended
Semantic Web Conference (ESWC), pages 170–184, 2013.

[63] S. Käbisch, D. Peintner, and D. Anicic. Standardized and Efficient RDF Encoding for
Constrained Embedded Networks. In 12th European Conference on the Semantic Web
(ESWC), pages 437–452, 2015.

[64] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. RFC
2898 (Informational), September 2000.

[65] A. Kasten, A. Scherp, F. Armknecht, and M. Krause. Towards search on encrypted graph
data. In Proc. of the International Conference on Society, Privacy and the Semantic
Web-Policy and Technology, pages 46–57, 2013.

[66] A. Kasten, A. Scherp, and P. Schauß. A Framework for Iterative Signing of
Graph Data on the Web, pages 146–160. Springer International Publishing, Cham,
2014. doi: 10.1007/978-3-319-07443-6_11. URL https://doi.org/10.1007/
978-3-319-07443-6_11.

[67] J. Katz, A. Sahai, and B. Waters. Predicate Encryption Supporting Disjunctions, Polyno-
mial Equations, and Inner Products. J. Cryptology, 26(2):191–224, 2013.

[68] M. Kaufmann, D. Kossmann, N. May, and A. Tonder. Benchmarking databases with
history support. Technical report, Eidgenössische Technische Hochschule Zürich, 2013.

[69] S. Kirrane. Security and Privacy Aspects of Semantic Data, pages 1–
9. Springer International Publishing, Cham, 2018. ISBN 978-3-319-63962-8.
doi: 10.1007/978-3-319-63962-8_290-1. URL https://doi.org/10.1007/
978-3-319-63962-8_290-1.

[70] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology versioning and change
detection on the web. In Proc. of EKAW, pages 197–212. 2002.

[71] K. Kurosawa and L. T. Phong. Kurosawa-desmedt key encapsulation mechanism, revis-
ited. IACR Cryptology ePrint Archive, 2013:765, 2013.

H2020-ICT-2016-2017
Project No. 731601

https://doi.org/10.1007/978-3-319-07443-6_11
https://doi.org/10.1007/978-3-319-07443-6_11
https://doi.org/10.1007/978-3-319-63962-8_290-1
https://doi.org/10.1007/978-3-319-63962-8_290-1

D3.4: Transparency & Compliance Release 89/91

[72] G. Ladwig and A. Harth. CumulusRDF: linked data management on nested key-value
stores. In Proc. of Scalable Semantic Web Knowledge Base Systems, page 30, 2011.

[73] D. Le-Phuoc, H. N. M. Quoc, C. Le Van, and M. Hauswirth. Elastic and Scalable Process-
ing of Linked Stream Data in the Cloud. In 12th International Semantic Web Conference
(ISWC), pages 280–297, 2013.

[74] D. Lemire, O. Kaser, N. Kurz, L. Deri, C. O’Hara, F. Saint-Jacques, and G. Ssi-Yan-Kai.
Roaring Bitmaps: Implementation of an Optimized Software Library. arXiv preprint
arXiv:1709.07821, 2017.

[75] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure func-
tional encryption: Attribute-based encryption and (hierarchical) inner product encryption.
In Advances in Cryptology, pages 62–91, 2010.

[76] M. Martínez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and G. Navarro. Practical Com-
pressed String Dictionaries. Information Systems, 56:73–108, 2016.

[77] M. A. Martínez-Prieto, M. Arias, and J. D. Fernández. Exchange and Consumption of
Huge RDF Data. In 9th Extended Semantic Web Conference (ESWC), pages 437–452,
2012.

[78] M. A. Martínez-Prieto, J. D. Fernández, and R. Cánovas. Compression of RDF Dic-
tionaries. In 27th ACM International Symposium on Applied Computing (SAC), pages
1841–1848, 2012.

[79] M. A. Martínez-Prieto, J. D. Fernández, A. Hernández-Illera, and C. Gutiérrez. RDF
Compression. In S. Sakr and A. Zomaya, editors, Encyclopedia of Big Data Technologies,
pages 1–11. Springer International Publishing, Cham, 2018. ISBN 978-3-319-63962-
8. doi: 10.1007/978-3-319-63962-8_62-1. URL https://doi.org/10.1007/
978-3-319-63962-8_62-1.

[80] M. Meier. Towards Rule-Based Minimization of RDF Graphs under Constraints. In 2nd
International Conference on Web Reasoning and Rule Systems (RR), pages 89–103, 2008.

[81] M. Meimaris and G. Papastefanatos. The evogen benchmark suite for evolving rdf data.
In Proc. of MEPDaW, volume CEUR 1585, pages 20–35, 2016.

[82] M. Meimaris, G. Papastefanatos, S. Viglas, Y. Stavrakas, and C. Pateritsas. A query lan-
guage for multi-version data web archives. Technical report, Institute for the Management
of Information Systems, Greece, 2015. URL http://www.inmis.gr/uploads/
MyPublications/TR-IMIS-2015-2.pdf.

[83] P. Meinhardt, M. Knuth, and H. Sack. Tailr: a platform for preserving history on the web
of data. In Proc. of SEMANTiCS, pages 57–64. ACM, 2015.

[84] S. Neumaier, J. Umbrich, and A. Polleres. Automated quality assessment of metadata
across open data portals. ACM Journal of Data and Information Quality (JDIQ), 2016.
fourthcoming.

[85] T. Neumann and G. Weikum. x-RDF-3X: Fast querying, high update rates, and consis-
tency for RDF databases. Proc. of VLDB Endowment, 3(1-2):256–263, 2010.

H2020-ICT-2016-2017
Project No. 731601

https://doi.org/10.1007/978-3-319-63962-8_62-1
https://doi.org/10.1007/978-3-319-63962-8_62-1
http://www.inmis.gr/uploads/MyPublications/TR-IMIS-2015-2.pdf
http://www.inmis.gr/uploads/MyPublications/TR-IMIS-2015-2.pdf

D3.4: Transparency & Compliance Release 90/91

[86] N. F. Noy and M. A. Musen. Ontology Versioning in an Ontology Management Frame-
work. IEEE Intelligent Systems, 19(4):6–13, 2004. doi: 10.1109/MIS.2004.33.

[87] D. Okanohara and K. Sadakane. Practical Entropy-Compressed Rank/Select Dictionary.
In Proc. of ALENEX, pages 60–70, 2007.

[88] J. Pan, J. Gómez-Pérez, Y. Ren, H. Wu, W. Haofen, and M. Zhu. Graph Pattern Based
RDF Data Compression. In 4th Joint International Conference om Semantic Technology
(JIST), pages 239–256, 2015.

[89] M. Perry, P. Jain, and A. P. Sheth. SPARQL-ST: Extending SPARQL to Support Spa-
tiotemporal Queries. Geospatial Semantics and the Semantic Web, 12:61–86, 2011. doi:
10.1007/978-1-4419-9446-2_3.

[90] R. Popa, N. Zeldovich, and H. Balakrishnan. Cryptdb: A practical encrypted relational
dbms. Technical report, MIT-CSAIL-TR-2011-005, 2011.

[91] Y. Sagiv. Concurrent Operations on B*-Trees with Overtaking. J. Comput. Syst. Sci., 33
(2):275–296, 1986.

[92] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A.-C. N. Ngomo. LSQ: The Linked
SPARQL Queries Dataset. In The Semantic Web - ISWC 2015. Springer, 2015.

[93] M. Saleem, Q. Mehmood, and A.-C. N. Ngomo. FEASIBLE: A Feature-Based SPARQL
Benchmark Generation Framework. In Proc. of ISWC, pages 52–69. 2015.

[94] G. Schreiber and Y. Raimond. RDF 1.1 Primer. W3C Working Group Note, 2014.

[95] K. Stefanidis, I. Chrysakis, and G. Flouris. On Designing Archiving Policies for Evolving
RDF Datasets on the Web. In Proc. of ER, pages 43–56. 2014.

[96] B. Svingen. Publishing with apache kafka at the new york
times, 2017. URL https://www.confluent.io/blog/
publishing-apache-kafka-new-york-times/.

[97] J. Swacha and S. Grabowski. OFR: An Efficient Representation of RDF Datasets. In
4th Symposium on Languages, Applications and Technologies (SLATE), pages 224–235,
2015.

[98] Y. Tzitzikas, Y. Theoharis, and D. Andreou. On Storage Policies for Semantic Web
Repositories That Support Versioning. In Proc. of ESWC, pages 705–719. 2008.

[99] M. Vander Sander, P. Colpaert, R. Verborgh, S. Coppens, E. Mannens, and R. Van de
Walle. R&Wbase: Git for triples. In Proc. of LDOW, 2013.

[100] G. Venkataraman and P. Sreenivasa Kumar. Horn-rule based compression technique for
RDF data. In 30th Annual ACM Symposium on Applied Computing (SAC), pages 396–
401, 2015.

[101] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester,
G. Haesendonck, and P. Colpaert. Triple Pattern Fragments: a low-cost knowledge graph
interface for the Web. Journal of Web Semantics, 37–38:184–206, Mar. 2016.

H2020-ICT-2016-2017
Project No. 731601

https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/

D3.4: Transparency & Compliance Release 91/91

[102] M. Volkel, W. Winkler, Y. Sure, S. Kruk, and M. Synak. Semversion: A versioning
system for RDF and ontologies. In Proc. of ESWC, 2005.

[103] S. G. J. G. C. Zaniolo. Rdf-tx: A fast, user-friendly system for querying the history of rdf
knowledge bases. In Proc. of EDBT, 2016.

[104] D. Zeginis, Y. Tzitzikas, and V. Christophides. On Computing Deltas of RDF/S Knowl-
edge Bases. ACM Transactions on the Web (TWEB), 5(3):14, 2011.

[105] A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A General Framework for
Representing, Reasoning and Querying with Annotated Semantic Web Data. JWS, 12:
72–95, 2012.

[106] A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A General Framework for
Representing, Reasoning and Querying with Annotated Semantic Web Data. JWS, 11:
72–95, 2012.

H2020-ICT-2016-2017
Project No. 731601

