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Disclaimer

This document contains description of the SPECIAL project work and findings.

The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of this
document hold any responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of this
publication is the sole responsibility of the SPECIAL consortium and can in no way be taken to reflect
the views of the European Union.

The European Union is established in accordance with the Treaty on European Union (Maastricht).
There are currently 28 Member States of the Union. It is based on the European Communities and
the Member States cooperation in the fields of Common Foreign and Security Policy and Justice and
Home Affairs. The five main institutions of the European Union are the European Parliament, the
Council of Ministers, the European Commission, the Court of Justice and the Court of Auditors
(http://europa.eu/).

SPECIAL has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 731601.
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1 Summary

The aim of this deliverable is to test the scalability and robustness of the SPECIAL platform such
that the results can be used to inform future releases of the platform. It also offers an update
over the previous release by reflecting on (i) a new evaluation on a larger cluster consisting of 10
nodes, which (ii) considers the latest release of the platform. We also (iii) provide an in-depth
evaluation of PLReasoner, the SPECIAL’s compliance engine.

What is in this deliverable

In this version of the deliverable we pay particular attention to: (i) introducing the general
benchmark scenario and the non-functional desiderata, in Chapter 1; (ii) setting up the method-
ology that guides our evaluation, including the preparation of the synthesised test data and the
identification of key performance indicators, in Chapter 2; (iii) providing an evaluation of the
third release of the SPECIAL platform both in terms of performance and scalability, in Chap-
ter 3; (iv) specifically performing an in-depth evaluation of the SPECIAL’s compliance engine,
called PLReasoner, in Chapter 4. Finally, we conclude in Chapter 5.

This deliverable builds upon technical requirements from DI.7 Policy, transparency and
compliance guidelines V2, D1.8 Technical Requirements V2, the SPECIAL policy language
which is described in D2.5 Policy Language V2, the SPECIAL transparency and compliance
framework presented in Deliverable D2.7 Transparency Framework V2 and D2.8 Transparency
and Compliance Algorithms V2. The System Under Test (SUT) refers to the current third release
of the SPECIAL platform, presented in D3.4 Transparency & Compliance Release.

What is not in this deliverable

Considering the iterative and agile nature of the project, this deliverable is not meant to serve
as a complete evaluation of the SPECIAL platform, but rather as a summary of our current tests
and results that will be updated regularly as the project advances. Thus, we do not deal here the
security aspects, which are subject of the public penetration/hacking challenges in WP5 (D5.3
Public penetration/hacking challenges). Note also that the usability testing is provided in WP4
(D4.4 Usability testing report V2). Instead, this document aims to describe the performance and
scalability tests to be performed in current and future version of the platform.

Similarly, we do not deal with any issue related to compliance checking (based on busi-
ness rules) of existing Line of Business and Business Intelligence / Data Science applications
(described in D2.7 Transparency Framework V2). It is worth noting that the implementation
and testing plans of the pilots are devoted to WP5 (D5.1 Processing and aggregation pilot and
testing plans V1, D5.3 Sharing Pilot and testing plans V2 and D5.5 Final Pilot implementations
and testing plans V3). The information of this deliverable, and its future versions, will be used
to guide these evaluations.

H2020-ICT-2016-2017
5% Project No. 731601
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Chapter 1

Introduction

In this chapter we introduce our benchmark scenario by summarising the current functionality
and components of the SPECIAL platform, our System Under Test (SUT). Then, we collect
requirements and considerations that will guide our benchmark approach, which is presented in
the next chapter. Finally, we review relevant state of the art.

1 The SPECIAL platform

One of the core technical objectives of SPECIAL is to implement consent, transparency and
compliance mechanisms for big data processing. The SPECIAL platform uses Semantic Web
technology in order to model the information that is necessary to automatically verify that data
is processed according to obligations set forth in the GDPR (i.e. usage policies, data processing
and sharing events, and the regulatory obligations).

As presented in D1.8 Technical Requirements V2, the SPECIAL platform consists of three
primary components:

(1) The SPECIAL Consent Management Component is responsible for obtaining consent from
the data subject and representing it using the SPECIAL usage policy vocabulary (D2.5
Policy Language V2);

(i1) The SPECIAL Transparency Component is responsible for presenting data processing and
sharing events to the user in an easily digestible manner following the SPECIAL policy
log vocabulary (D2.7 Transparency Framework V2); and

(iii) The SPECIAL Compliance Component focuses on demonstrating that data processing
and sharing complies with usage control policies (D2.8 Transparency and Compliance
Algorithms V2).

This deliverable specifically focuses on evaluating the scalability and robustness of the SPE-
CIAL transparency and compliance components. Note that the SPECIAL consent management
component is mostly related to our efforts on user interaction in WP4 (cf. see D4.4 Usability
testing report V2).

In D3.4 Transparency & Compliance Release, the SPECIAL transparency and compliance
components are materialised in a practical implementation of the SPECIAL platform. There-
fore, this deliverable will report on the evaluations of the third release of the platform.

The system architecture of our current system is depicted in Figure 1.1.

H2020-ICT-2016-2017
5% Project No. 731601
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Figure 1.1: SPECIAL-K architecture setup for ex post compliance checking

SPECIAL Transparency Component. Data processing and sharing event logs are stored in
the Kafka' distributed streaming platform. A Kafka topic is used to store application logs,
while a separate compliance topic (called Compliance Log) is used to store the enriched
log after compliance checks have been completed.

As logs can be serialised using JSON-LD, it is possible to benefit from the faceting brows-
ing capabilities of Elasticsearch?, and the out of the box visualisation capabilities provided
by Kibana.

Compliance Checker. The compliance checker, which currently includes an embedded Her-
miT? reasoner uses the consent saved in MongoDB, together with the application logs
provided by Kafka to check that data processing and sharing complies with the relevant
usage control policies. The results of this check are saved onto a new Kafka topic. In
addition to HermiT, we have developed and integrated a specific SPECIAL’s compliance
engine, called PLReasoner (see [4] for a description of the algorithms and their complex-
ity analysis). A specific evaluation is provided in Chapter 4.

To the best of our knowledge, no benchmark exists for the GDPR-based compliance and
transparency services such as the ones provided by the SPECIAL platform. However, the ex-
istence of such systems and benchmarks is of utmost importance to identify shortcomings, op-
timise the performance and guide future directions. In the following, we provide additional
considerations and technical requirements that are relevant in order to benchmark compliance
and transparency components emerging from our efforts in SPECIAL, and we review relevant
state of the art. Our benchmarking approach and evaluation is presented in the next chapters.

"https://kafka.apache.org/
Zhttps://www.elastic.co/products/elasticsearch
3http://www.hermit-reasoner.com/
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Table 1.1: Transparency and compliance services.

Component Functionalities Current support in SPECIAL
platform (third release)
Transparency List the data processing and sharing events that happened Total
component  Find data processing and sharing events by data subject, by consent, by ~ Partial (temporal filter is not sup-
temporal window ported)
Add data processing and data sharing events to the transparency ledger ~ Total
Export the transparency data in an interoperable format Total
Compliance  Coherency validation of transparency data and consent data Total

component  Can be called by an access control system for ex-post and ex-ante com-  Total
pliance checking

Can process the transparency ledger for ex-post compliance checking Total

Get statistics for key parameters (#consents, #revocations, #data sharing ~ Partial (supported for most parame-
events, #data processing events ...) ters)

1.1 Considerations and Technical Requirements

Table 1.1 recalls the services we foresee for the transparency and compliance components (see
D1.8 Technical Requirements V2), and the current support in the SPECIAL platform (third re-
lease - D3.4 Transparency & Compliance Release). As can be seen, most of the transparency
services are already in place. However, our current prototype only supports basic filtering of pro-
cessing and sharing events. Our current benchmark, presented in the next chapter, will consider
this basic functionality, while more expressive queries, if needed, are deferred to pilot evalu-
ations in WP5. In turn, the compliance component implements the core functionality. Given
that our engine performs ex-ante compliance checking using the same core components of the
ex-post compliance checking (as described in the third release), we focus on evaluating the core
compliance checking mechanisms.

1.1.1 Non-functional requirements

Before discussing the practical benchmark and its results, let us recall and discuss some of the
non-functional desiderata presented in D1.7 Policy, transparency and compliance guidelines V2
(also reviewed by Bonatti et al. [3]) and D1.8 Technical Requirements V2:

Storage: Given the volume of events and policies that will need to be handled, the scalability
of event data processing is a major consideration. Parameters such as the number of data
subjects, the number of consent requests and the number of data processing steps, have a
multiplicative effect.

In this respect, as described in D3.4 Transparency & Compliance Release, the SPECIAL
platform makes use of a specific Kakfa feature, referred to as log compaction, which re-
duces storage needs. In particular, the compliance checker feeds on a compacted Kafka
topic which holds the complete policies for all data subjects, where duplicates are re-
moved. We can expect other platforms to use similar features in order to reduce the
storage footprint.

It is also worth mentioning that the replication factor of the underlying distributed filesys-
tem can increase the storage needs significantly (but improves the overall fault-tolerance
of the system), hence this information is crucial for benchmarking. In our current sce-
nario, we consider a replication factor of two, i.e., data is written to two nodes.

H2020-ICT-2016-2017
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Finally, note that we consider instantaneous data sharing and processing events. In D2.7
Transparency Framework V2, we discuss a grouping feature for the events, which is not
currently supported by the SPECIAL platform and will be considered as part of future
work.

Scalability: Because of the multiplicative effect is it important that the SPECIAL architecture
can adapt to larger volumes i.e. via both horizontal and vertical scaling.

As shown in Figure 1.1, the SPECIAL platform runs on proven open source software that
is used at large scale by some of the largest companies in the world* [5, 6, 14]. In D3.4
Transparency & Compliance Release, we provide details on how the system can scale to
support a load beyond what a single instance can handle.

Thus, the benchmark tasks should build upon a real-word large-scale scenario, where the
ability of the system to scale horizontally and vertically can be validated.

Performance & responsiveness: The total volume of data should only marginally impact the
performance and responsiveness of the services. Creating a single data store will destroy
the data locality for some services, impacting responsiveness.

As discussed in D3.4 Transparency & Compliance Release, Kafka is specifically dedi-
cated for high-performance, low-latency commit log storage. Given its streaming focus
(yet it efficiently supports batch oriented workload), the system can perform near real
time data processing. Similarly, the SPECIAL transparency component is based on Elas-
ticsearch, which provides efficient query times, heavily relying on the filesystem cache.

Our benchmarking scenario is designed to assure that the SPECIAL platform can cope
with such requirements, assuring an overall efficient performance and low latency.

Availability, robustness & long-term applicability: Since transparency and compliance manage-
ment is bound to a legal obligation, solutions should be guaranteed to work for many
years. For personal data, the GDPR calls for a long-term durable solution. If changed,
the new system should be capable of importing the existing transparency and compliance
data.

The SPECIAL platform makes use of the ability of Kafka to store records in a fault-
tolerant durable way. For example, as described in D3.4 Transparency & Compliance
Release, in case of catastrophic failure where all consumers die, the system can recover
the last processed event from a special state topic. This prevents redoing work which was
already done previously and avoids data loss.

The evaluation of fault-tolerance aspects is deferred to future work.

Security: In addition to the above requirements, all components in the ecosystem must adhere
to a general requirement of data security, as it is imperative that a breach of security does
not hinder the operations of the systems.

D3.4 Transparency & Compliance Release discusses current authentication and autho-
risation methods for the SPECIAL platform. While, DI1.8 Technical Requirements V2
identifies data privacy threats mitigation. In this deliverable we do not directly address
this aspect, as security aspects will be subject of the public penetration/hacking challenges
in WP5 (D5.3 Public penetration/hacking challenges).

*Elasticsearch use cases:’

H2020-ICT-2016-2017
5% Project No. 731601
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1.1.2 Considerations for Compliance Checking

SPECIAL policies are encoded using a fragment of OWL2-DL. As discussed in D2.7 Trans-
parency Framework V2 and D2.8 Transparency and Compliance Algorithms V2, the main policy-
related reasoning tasks are reduced to subsumption and concept consistency checking. That is,
checking whether a data controller’s policy Py complies with a data subject policy (i.e. consent)
P amounts to checking whether the inclusion Py T P is entailed by the ontologies for the
policy language and the vocabulary.

As mentioned above, and depicted in Figure 1.1, our prototype performs the compliance
checking on the HermiT reasoner, by default, using OWL API 3.4.3 1. In this deliverable, we
also evaluate the PLReasoner, which uses OWL API 5.1.7.

1.2 State of the Art

To the best of our knowledge, no established benchmark covers the identified transparency and
compliance operations, summarised in Table 1.1 nor the requirements listed in Section 1.1.1,
which are the main objective of the SPECIAL platform. This motivates our proposed benchmark
(presented in the next chapter), which covers most of the core operations and requirements, and
it is designed to be flexible and extensible in the future.

Nevertheless, much work has been done in benchmarking OWL2 reasoners, which is a cen-
tral aspects for the compliance component, as discussed above. Traditionally, the elements in
OWL benchmarking are classified in data schema, workload and performance metrics [2, 9, 10,
11]. The former mostly refers to the structural complexity of the data schema and the usage of
particular ontology constructs. The workload comprises (i) the data generation process, which
often produces datasets of different sizes, and (ii) the queries or reasoning tasks to be performed
by the reasoner, which should be able to evaluate the inference capability and scalability of
reasoner. Finally, the performance metrics describe the quantitative measures that should be
evaluated, such as: loading time, which can include different subtasks such as loading ontolo-
gies and checking ABox consistency [2], query response time, i.e. the time needed to solve the
given reasoning task, completeness and soundness [8].

When it comes to well-established OWL benchmarks, the Lehigh University Benchmark
(LUBM) [9] is one of the first and most popular proposals. LUBM considers an OWL Lite
ontology with different ABox sizes, where different reasoning tasks of answering conjunctive
queries are proposed. The University Ontology Benchmark (UOBM) [11] extends LUBM to
include both OWL Lite and OWL DL ontologies and constructs. In turn, Weithoner et al [15]
discuss deficiencies and challenges of OWL benchmarks, listing a set of potential requirements
such as separating measurements in each step of the process, allowing for different ontology
serialisations, or disclosing the reasoners capabilities with respect to query caching.

Recently, the OWL reasoner evaluation (ORE) competition [13] provides different reasoning
challenges. ORE is generally based on the tasks of consistency, classification, and realisation,
on two OWL profiles (OWL DL and EL). Regarding the data corpus, ORE considers (i) different
ontologies submitted by users and (ii) sampled ontologies from different domains.

H2020-ICT-2016-2017
5% Project No. 731601
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Chapter 2

Evaluation strategy for the SPECIAL
platform

In this chapter we present the benchmark for the GDPR-based transparency and consent we
developed in the context of the SPECIAL project, referred to as the SPECIAL Transparency and
Consent Benchmark (STC—-bench) hereinafter.

The application scenario considers the SPECIAL BeFit scenario of fitness tracking pre-
sented in D1.7 Policy, transparency and compliance guidelines V2, which deals with a potential
large volume of streaming content, namely location and heart data from BeFit devices.

As we motivated in the previous chapter, there is a lack of benchmarks to evaluate the
GDPR-based compliance and transparency services such as the ones provided by the SPECIAL
platform. Thus, in addition to serving our evaluation purposes, we expect STC-bench to
become a valuable asset for similar systems implementing GDPR-based transparency and com-
pliance.

We design STC-bench following the same methodology as most of the benchmarks under
the H2020 HOBBIT! (Holistic Benchmarking of Big Linked Data) project [12]. Thus, the design
of the benchmark considers three main aspects:

(i) First, we identify the choke points, that is, the identified technical difficulties that the
benchmark should consider to challenge the system under test (our SPECIAL platform).
We present our choke points in Section 1.

(i1) Then, the benchmark data is selected. In our case, and given our scenario, we propose a
generator of synthetic data, described in Section 2.

(iii) Finally, we design benchmarking tasks to cover the identified choke points. Section 3
presents and discusses the current tasks in STC-bench.

The STC-bench data generator and the results of the evaluation (presented in the next
chapter) are publicly available in our website?, which will be continuously updated with the last
results of our tests.

'nttps://project—hobbit.eu/
https://www.specialprivacy.eu/benchmark

H2020-ICT-2016-2017
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1 Choke Point-based Benchmark Design

We design STC-bench following the same methodology as most of the benchmarks under the
H2020 HOBBIT project [12]. Thus, the development of the benchmark is driven by so-called
“choke-points”, a notion introduced by the Linked Data Benchmark Council (LDBC) [1, 7]. A
choke-point analysis is aimed at identifying important technical challenges to be evaluated in
a query workload, forcing systems onto a path of technological innovation. This methodology
depends on the identification of such workload by technical experts in the architecture of the
system under test.

Thus, we analysed the SPECIAL platform with the technical experts involved in the SPE-
CIAL policy vocabulary, the transparency and the compliance components. Following this
study, we identified the transparency and compliance choke points described below.

Transparency choke points:

CP1 - Concurrent access. The benchmark should test the ability of the system to efficiently
handle concurrent transparency requests as the number of users grows.

This choke point mostly affects the scalability and the performance and responsiveness
requirements identified in the previous chapter (see Section 1.1). On the one hand, the
system must scale to cope with the increasing flow of concurrent transparency requests.
Ideally, the system can dynamically scale based on the work load without interruptions,
being transparent to users. On the other hand, the performance and responsiveness (in
particular, the latency of the responses) should be unaffected irrespective of the number
of users or, at worst, being affected marginally.

In the current third release of the SPECIAL platform, the transparency component relies
on Elasticsearch, where different thread pools can be specified>.

CP2 - Increasing data volume. The system should provide mechanisms to efficiently serve
the transparency needs of the users, even when the number of events in the system (i.e.
consents, data processing and sharing events) grows.

In this case, in addition to the previous consideration on scalability and the performance
and responsiveness, special attention must be paid to the storage requirements and the
indexing mechanisms of the system, such that the accessing times do not significantly
depend on the existing data in the system (e.g. the number of events).

As mentioned in the previous chapter, the SPECIAL platform makes use of log com-
paction to reduce the space needs (see (D3.4 Transparency & Compliance Release for
further details). As for Elasticsearch, we use the default configuration, where further
inspection on different compression options (e.g. using the DEFLATE algorithm*) is de-
ferred to future work.

CP3 - Ingestion time in a streaming scenario. The benchmark should test that the transparency
needs are efficiently served in a streaming scenario, i.e. the user should be able to access

3See  Elasticsearch documentation: https://www.elastic.co/guide/en/elasticsearch/
reference/current/modules-threadpool.html
4See compression in Elasticsearch: https://www.elastic.co/blog/

store-compression-in-lucene-and-elasticsearch
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the information of an event (and the result of the compliance check) shortly after the event
arrives to the system.

This choke point implies that no significant delays are introduced (i) by the compliance
checker, and, specifically (ii) by the ingestion of the event in the transparency system.

Interestingly, engines such as Elasticsearch are mostly focused on read-intensive opera-
tions. Thus, the benchmark should consider this choke point to evaluate whether write-
intensive streaming scenarios can become a bottleneck in the system.

Compliance choke points:

CP4 - Different “complexities” of policies. In general, policies can be arbitrarily complex, af-
fecting the overall performance of any compliance checking process. Thus, the bench-
mark must consider different complexities of policies, reflecting a realistic scenario.

In our case, as discussed in the previous chapter, SPECIAL policies are encoded using a
fragment of OWL2-DL, where the main task of the reasoner is to perform subsumption
and concept consistency checking. Although this process could be very efficient, the
complexity of the policy can be determined by: (i) the number on intersecting concepts
in each category (data, processing, purpose, storage and recipients) of the SPECIAL
Minimum Core Model (MCM), given that each of them has to be considered to perform
the compliance checking, and (iii) the number of UNION policies that conform to the user
consent, given that the compliance checker must analyse all of them before assuring that
one event is not compliant with a given consent.

CPS - Increasing number of users. The benchmark should test the ability of the system to
efficiently scale and perform as increasing number of users, i.e. data processing and
sharing events, are managed.

As previously discussed, the current version of the SPECIAL platform relies on Kafka to
implement the compliance component. Kafka, can scale both horizontally and vertically,
balancing topic partitions between cluster nodes. In this scenario, the benchmark must
be able to provide a stress test to evaluate the the performance of the system when the
number of users grows and starts to exceed the resource capabilities of the system.

CP6 - Expected passed/fail tests. In general, the benchmark must consider a realistic scenario
where policies are updated, some consents are revoked, and others are updated. The
benchmark should provide the means to validate whether the performance of the system
depends on the ratio of passed/fail tests in the work load.

Note that our current version of the SPECIAL platform preserves the full history of poli-
cies and consents. However, the transparency component only considers the last consent
of the system users in order to evaluate the compliance of the processing and sharing
events.

CP7 - Data generation rates. The system should cope with consents and data processing and
sharing events generated with increasing rates, addressing the “velocity” requirements of
most big data scenarios.

In our case, Kakfa provides the necessary toolset to deal with real-time streaming needs.
However, the capacity of the system is delimited by the infrastructure (the underlying
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cluster). The benchmark should be flexible enough to test the capabilities of the deployed
system and its scalability.

Note also that this choke point is of particular interest for “online users” in ex-ante com-
pliance checking scenarios (as shown in Table 1.1).

CPS8 - Performant streaming processing. The benchmark should be able to test the system in
a streaming scenario, where the compliance checking should fulfil the aforementioned
requirements of performance and responsiveness (latency).

Note that the SPECIAL platform is specifically designed to cover such streaming needs.
Nonetheless, the benchmark should help in determining the expected latency distribution
for a given work load on a supporting infrastructure.

CP9 - Performant batch processing. In addition to streaming, the system must deal with per-
formant compliance checking in batch mode.

In our case, this choke point is particularly interesting as SPECIAL is based on the
streaming-based Kafka framework, but it can also manage batch processing. Note that,
our initial SPIRIT proposal (see D2.8 Transparency and Compliance Algorithms V2),
which leverages the SANSA? stack for transparency and compliance, is more suitable for
batch processing. Nonetheless, all of the SPECIAL uses cases require stream processing.

2 Data Generation

In the following we present the STC-bench data generator to test the compliance and trans-
parency performance of the SPECIAL platform.

First, and foremost, note that the data generation should consider two related concepts: the
controllers’ policies and the data sharing and processing events that are potentially compliant
with user consent.

When it comes to the policies, we distinguish three alternative strategies to generate pseudo
random policies:

(a) Generating policies in the PL fragment of OWL 2, disregarding the SPECIAL minimum
core model (MCM);

(b) Generating random policies that comply to the SPECIAL minimum core model (MCM);

(c) Generating not fully random (i.e. pilot oriented policies) subsets of the business policies.

In this benchmark, we focus on the second alternative, providing a synthetic data generator
following the BeFit scenario. Chapter 4 uses the third strategy to specifically perform an in-
depth evaluation of the PLReasoner SPECIAL’s compliance engine, called PLReasoner.

In addition, the classes in the policies and the log events can come from the standard SPE-
CIAL policy vocabulary, or can be extended with new terms from an ontology. At this stage, we
consider the SPECIAL policy vocabulary as the core input.

Thus, the STC-bench data generator can produce both policies and data sharing and pro-
cessing events. The following parameters can be set:

‘http://sansa-stack.net
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Table 2.1: Transparency queries for the data subject and the data controller

ID User Query

Q1 All events of the user

Q2 Percentage of events of the user passed
Q3 Percentage of events of the user failed
Q4 Data subject All events of the user passed

Q5 All events of the user failed

Q6 Last 100 events of the user

Q7 All events of the user from a particular application
Q8 All events

Q9 Percentage of events passed

Q10 Percentage of events failed

Q11  Datacontroller  All events passed

Q12 All events failed

QI3 Last 100 events

Ql4 All events from a particular application

* Generation rate: The rate at which the generator outputs events. This parameter under-
stands golang duration syntax eg: 1s or 10ms.

* Number of events: The total number of events that will be generated. When this parame-
ters is <=0 it will create an infinite stream .

» Format: The serialisation format used to write the events (json or ttl).

* Type: The type of event to be generated: log, which stands for generating data sharing
and processing events, or consent, which generate new user consents.

* Number of policies: The maximum number of policies to be used in a single consent.

* Number of users: The number of UserID attribute values to generate.

3 Benchmark Tasks

In the following we present the set of concrete benchmark tasks for the SPECIAL compliance
and transparency components. As for transparency tasks, note that the envisioned user stories in
D1.8 Technical Requirements V2 list potential interaction with users, but they are too general to
describe functionality to be considered in our current quantitative approach for benchmarking.
A qualitative analysis can be deferred to pilot evaluations in WP5.

Thus, we establish here a set of simple tasks to be performed by the SPECIAL transparency
component. The transparency tasks are illustrated in Table 2.2. In this case, the system is aimed
at resolving user and controller transparency queries. Further work is needed to identify the
expressivity of these queries. We consider a minimum subset of queries, described in Table 2.1.

In turn, Table 2.3 shows the tasks to be performed by the SPECIAL compliance component
in order to cover all choke points identified above. Each task delimits the different parameters
involved, such as the scenario (streaming or batch processing), the number of users, etc. These
parameters follow the choke points, and their values are estimated based on consultation with
the SPECIAL pilot partners. Note that all tests set a test time of 20 minutes, which delimits the
number of events generated given the number of users and event generation rate in each case.
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Table 2.2: Transparency tasks, all referring to user and controller transparency queries

Task #Users Event Rate Policies #events Pass Ratio  Choke Point
100
1K
T-T2 10K none UNION of 5p.  500M events Random CP1
100K
IM
M
50M
T-T3 1000 none UNIONof 5p.  100M Random CP2
1B
10B
1 ev./60s
1 ev./30s
T-T4 1000 1 ev./10s UNION of 5p.  500M events Random CP3
lev/s
10 ev./s
Table 2.3: Compliance tasks.
Task  Subtask  Scenario #Users Event Rate  Policies Test Time Pass Ratio  Choke Point
C-T1-1 1 policy
C-T1-2 UNION of 5 p.
C-Tl C-T1-3 Streaming 1000 1 ev./10s UNIONof 10p. 20 minutes Random CP4,CP8
C-T1-4 UNION of 20 p.
C-T1-5 UNION of 30 p.
C-T2-1 100
C-T2-2 1K
C-T2 C-T2-3 Streaming 10K 1 ev./10s UNION of 5 p. 20 minutes Random CP5,CP8
C-T2-4 100K
C-T2-5 M
C-T3-1 0%
C-T3-2 25%
C-T3 C-T3-3 Streaming 1000 1 ev./10s UNION of 5 p. 20 minutes 50% CP6,CP8
C-T3-4 75%
C-T3-5 100%
C-T4-1 1 ev./60s
C-T4-2 1 ev./30s
C-T4 C-T43 Streaming 1000 1 ev./10s UNION of 5 p. 20 minutes Random CP7,CP8
C-T4-4 1ev/s
C-T4-5 10 ev./s
C-T5-1 100 100K events
C-T5-2 1K 1M events
C-T5 C-T53 Batch 10K - UNION of 5 p. 10M events Random CP9
C-T5-4 100K 100M events
C-T5-5 IM 1B events
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4 Key Performance Indicators (KPIs)

In order to evaluate the ability of the SPECIAL platform to cope with the previously described
tasks we defined the following key performance indicators (KPIs):

* Compliance Latency: the amount of time between the point in which the compliance
check of an event was performed and the time when the event was received. In our case,
we consider that the compliance check is performed when the result is written to the
appropriate Kafka topic storing the results of the process.

Compliance Throughput: The average number of events checked per second.

* Average transparency query execution: The average execution time for the query.

CPU Usage by Node: The average CPU usage by nodes in the system.

Memory Usage by Node: The average memory usage by nodes in the system.

Disk Space: The total disk space used in the system.

In addition to these indicators, when the system is deployed in a real-world scenario, the
overhead with respect to the Line of Business application can be provided. This indicator can
be considered in the future testing plans of the pilots, to WP5 (D5.3 Sharing Pilot and testing
plans V2 and D5.5 Final Pilot implementations and testing plans V3).
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Chapter 3

Evaluation

This chapter shows the results on the evaluation of STC-bench on the current version of the
SPECIAL platform (third release - D3.4 Transparency & Compliance Release).

In this second version of the deliverable, we focus on compliance, as it is the most data and
processing intensive task of the project, showing how STC-bench can be applied to measure
the capabilities of a particular installation of the SPECIAL platform. The transparency tasks
can serve as guidelines for future developments and evaluations of the transparency framework
provided within the SPECIAL platform as well as the SPECIAL pilots.

The remaining of the chapter is organised as follows. Section 1 provides details on the
specification of the system running the SPECIAL system under test. In Section 2 we perform
a first analysis of scaling the number of compliance checking processes. Then, we present the
results on the aforementioned STC-bench compliance tasks, presented in the previous chapter.
An in-depth evaluation and comparison of PLReasoner, the tailored SPECIAL’s compliance
engine, with respect to HermiT is presented in the next chapter.

1 Experimental Framework

Our experiments were executed against an installation of the third release of the SPECIAL
platform (D3.4 Transparency & Compliance Release) on a cluster consisting of 10 nodes. Al-
though, it is expected that large-scale companies could provide more computational resources,
this installation (i) can serve many data-intensive scenarios as we will show in the results, (ii)
is meant to provide clear guidelines on the scalability of the platform, which can help to plan
future installations and evaluations.

The characteristic of the cluster are the following:

* Number of Nodes: 10.

e CPUs: Each node consists of 4 CPUs per machine (2 cores per CPU).
* Memory: 16 GB per node.

* Disk Space: 100 GB per node.

* Operating System: CoreOS 2023.5.0 (Rhyolite).
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Figure 3.1: Median and average latencies with increasing number of compliance checkers

* Replication Factor: 2. As mentioned this implies that data is written to 2 nodes, enhancing
fault-tolerance at the cost of additional space requirements and a minimum time overhead.

We report the averaged results of 3 independent executions.

2 Scaling the Compliance Checking Process

Before delving into the concrete results on the STC-bench tasks (shown in the previous sec-
tion) we present here a first study on the scalability of the system with respect to the number of
processes executing compliance checking.

As stated in D3.4 Transparency & Compliance Release, topics in Kafka are divided into
partitions, which are the actual log structures persisted on disk. The number of partitions estab-
lishes an upper limit to how far the processing of records can be scaled out, given that a partition
can only be assigned to a single consumer (in a consumer group). Thus, the total number of par-
titions of the application log topic will decide how many instances of the compliance checker
can process the data in parallel.

Given the available resources of the cluster, we decided to set up 10 partitions, which puts
an upper limit of 10 compliance checkers running in parallel.

As a first evaluation, we show how the system behaves with increasing compliance checkers
running in parallel. We perform the test in a streaming (Section 2.1) and batch processing
(Section 2.2) scenario.

2.1 Streaming

For this scenario, we evaluate the streaming task C-74-4 from STC-bench, shown in Table
2.3. Note that the task considers a stream of 1,000 users, where each user generates 1 event
every second. That is, we evaluate an event stream that, on average, generates / event every
Ims, producing a total of 1,200,000 events. Given that we expect a performance on the level of
ms per check, the streaming flow is close to the limit of one compliance checker.

Figure 3.1 shows the median and average latencies (in milliseconds, with logarithm scale)
with different number of compliance checkers in parallel, ranging from 1 to 10 (with 10 being
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Latency (in percentiles) using increasing number of checkers
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Figure 3.2: Latencies (in 95% percentile) with increasing number of compliance checkers (1, 5,
10 checkers)
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Figure 3.3: Latencies (in 95%, 75% and 50% percentile) with increasing number of compliance
checkers (1, 10 checkers)

the upper limit defined by the number of partitions as explained above). Note that the median
is usually preferred to the average given that the latency distribution can be skewed. Results
show that the (median) latency is always at the level of milliseconds (in particular, less than 2.5
ms), with a noticeable improvement when more compliance checkers are running in parallel,
providing a stable latency of 1.5 ms. As expected, the slightly higher average figures denote the
expected skewed distribution.

Given this behaviour, we inspect the percentile latency, i.e, the value at which a certain
percentage of the data is included. Figure 3.2 represents (in milliseconds and logarithm scale)
the latency at 95% percentile, using 1, 5 or 10 parallel checkers. For instance, a value of ‘100’ ms
means that 5% of the events have a latency greater than or equal to ‘100’ ms. The distribution of
95% percentiles first shows an initial warm-up effect, with higher latencies until the first 10,000
events. Then, the latencies are stable with 1-2 ms in all cases, even at the high streaming rate
of 1 event every ms. That is, in general, only 5% of the events can experience latencies over
1-2 ms. As expected, latencies are slightly greater if only 1 checker is used. It is worth noting
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Figure 3.4: CPU usage (in %) with increasing number of compliance checkers
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Figure 3.5: Memory usage (in GB) with increasing number of compliance checkers

that the evaluation uncovered a recurrent peak with 5 checkers around 20,000 events, which is
subject of future inspection.

Figure 3.3 completes this analysis, depicting 50, 75 and 95% percentiles for the extreme
cases of having 1 or 10 checkers in place. In this case, the 50 and 75 % percentiles are close to
the 95%, which reflects that most of the data is in the range of the 95% percentile.

In the following, we evaluate the CPU usage (in percentage) and memory usage (in GBs)
with increasing number of parallel compliance checkers (1, 5 and 10), shown in Figures 3.4 and
3.5 respectively. We report the average and the maximum number.

Results show that, thanks to latest improvements in the third release of the platform, (i)
memory usage increases sublinearly (and remains under 2 GBs) as more parallel compliance
checkers are running in parallel, and (ii) CPU consumption remains stable around 50%, with
no major influence of the number of checkers. Both results show that Kafka is able to optimise
the use of resources and to adapt to the number of parallel checkers. In addition, it is worth
mentioning that Kafka is able to add compliance checkers dynamically.

Overall, although different application scenarios can have highly demanding real-time re-
quirements, we expect that these figures, e.g. serving a 95% percentile latency of 1-2ms with an
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Figure 3.6: Total batch throughput (in events/s) by the compliance checker with increasing
number of compliance checkers
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Figure 3.7: Distribution of batch throughput (in events/s) by the compliance checker with in-
creasing number of compliance checkers

event stream of 1 event every 1ms, can cover a wide range of real-world scenarios. Recall that
the limit of 10 parallel compliance checkers is solely bounded to the number of partitions in the
installation, which depends on the resources of the cluster.

2.2 Batch processing

As stated in choke point CP9, the system must also deal with performant compliance checking
in batch. Thus, we repeat the previous analysis looking at different number of compliance
checkers for the case of batch processing. To this aim, we evaluate the batch task C-T5-2
from STC-bench, shown in Table 2.3. This task considers 1,000,0000 events that are already
loaded in the system. Given that we process events in batch, we inspect the provided throughput
(processed events per seconds) using an increasing number of compliance checkers.

Figure 3.6 shows the total batch throughput (in events/s) for 1, 5 and 10 compliance checkers
running in parallel. Similarly to the streaming scenario, the performance is improved signifi-
cantly as more instances are running concurrently. In this case, we can observe a sublinear

" H2020-ICT-2016-2017 @
** ** . \\\
% * Project No. 731601 (Q-«_/))

SPECIAL



D3.5: Scalability and Robustness testing report V2 25/41

Latency using increasingly complex policies
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Figure 3.8: Median and average latencies with increasing complex policies

behaviour, where the throughput ranges from 1796 events/s with 1 checker to 2523 events/s
with 10. The difference between 5 and 10 checkers is negligible.

Figure 3.7 shows the distribution of batch throughput (in events/s) across time, for 1, 5 and
10 compliance checkers. Results are consistent with the throughput reported above, showing a
general constant behaviour and a better performance with 5 and 10 checkers running in parallel.

3 Results on STC-bench Compliance Tasks

This section provides results on the STC-bench tasks, shown in the previous section. As
mentioned above, rather than showing a complete evaluation on an optimised and performant
infrastructure, we focus on testing an installation of the SPECIAL platform and pinpointing
good spots for optimisation.

We limit our scope to the functionalities provided by the current third release of the SPE-
CIAL platform and the scaling capabilities of the infrastructure (see the specifications in Section
1). In the following we present the results for all the compliance tasks (C-T1 to C-T5 from Ta-
ble 2.3). We disregard C-73 as no significant differences were found in our tests and we opt
for a more realistic random generation of policies. The description of each task and subtask is
provided in the previous chapter (see Table 2.3).

3.1 C-T1: Different Complexities of Policies

Recall that this task regards the behaviour of the system in a streaming scenario (at 1 event/10s
per user and 1K users) when different complexities of policies, measured as the number of
union policies, are considered. In this scenario, we make use of 1 compliance checker in order
to isolate the performance of one instance. We also compare the implementation of the Hermit
reasoner with our engine PLReasoner.

Figure 3.8 shows the median and average latencies (in milliseconds) with 1, 10 and 30
union policies. Results show that the median latency ranges between 1.5-5 ms, with relatively
small differences as the number of union policies grows, except for the union of 30 policies. In
this case, the higher number of union policies allows Hermit to quickly find a match (1.5 ms).
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Latency (in 95% percentiles) using increasingly complex policies
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Figure 3.9: Latencies (in 95% percentile) with increasing complex policies

As for the comparison of reasoners, Hermit seems to slightly outperform PLReasoner in the
scenario under test. Nonetheless, Chapter 4 provides a much more detailed comparison of both
in isolation, showing different figures. The study of this discrepancy, revealed in these results,
is subject of future work. A first analysis shows that different parsing and deserialisation of
policies can affect the times of PLReasoner in the SPECIAL platform. In addition, our isolated
study generally considers richer and more complex policies than STC-bench, also including
different time intervals (for the duration of the storage). As shown in the next chapter, in that
cases, the tailored PLReasoner engine is several times faster than Hermit.

Finally, the higher figures for the average latency again denote a skewed distribution. Thus,
we inspect the latency at 95% percentile (the value at which 95% of the data is included),
depicted in Figure 3.9 for 1, 10 and 30 policies. The distribution shows that, in all scenarios, the
latency at 95% percentile is stable after the warm-up, with small differences with more union
policies. Results also show that only 5% of the events can experience latencies over 5 ms.

3.2 C-T2: Increasing Number of Users

The second task in STC-bench focuses on evaluating the scalability of the system with in-
creasing number of users, from 100 to 1 million. These users are considered to be generating
events in parallel, each of them at a rate of 1 event every 10 seconds. In the following evaluation,
we study the first four subtasks, covering up to 100,000 users given the characteristics of the ex-
perimental infrastructure (see Section 1). Note that serving 100,000 users at the aforementioned
rate already implies to manage a stream of 10,000 events every second. In this scenario, we
consider 10 compliance checkers (see Section 2.1) running in parallel in order to cope with such
demand. As mentioned above, we expect that this evaluation can serve as a baseline to shed
light on the potential of the SPECIAL platform, guiding our current efforts.

Figure 3.10 shows the median and average latencies for 100-100,000 users. Results show
that the system is able to provide a median latency of less than 1ms with 1,000 users (each
user with 1 event every 10 seconds, hence overall the system receives 1 event every 10 ms
simultaneously), and 1.6ms with 10,000 users (overall, 1 event very ms). However, with 100,000
users, the current infrastructure needs to manage 1 event every 0.1ms (less than the checking
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Figure 3.10: Median and average latencies with increasing number of users
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Figure 3.11: Latencies (in 95% percentile) with increasing number of users

time of 1ms), which causes delays of several seconds.

In order to highlight potential worst-case scenarios, we represent the latency at 95% per-
centile in Figure 3.11. Note that an increasing number of users results in more events, hence
the different number of events in each scenario. As expected, results show two different sce-
narios. On the one hand, a number of users between 100-10,000 results in a 95% percentile
around I ms, with an initial warm-up step that produces higher latencies. On the other hand, a
higher number of users (100,000) leads to increasing latencies as the number of events grows,
i.e. events are queued for several seconds. The main reason is that the number of compliance
checkers (10, given the amount of computational resources in the cluster) cannot cope with the
overall actual ratio of 10,000 events every second. As discussed in Section 2, Kafka is able to
optimise and adapt to the number of parallel checkers, which is solely limited by the number of
partitions in the cluster, hence a more powerful infrastructure could cope with a greater number
of users.
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Latency with increasingly generation rates (per user)
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Figure 3.12: Median and average latencies with increasing generation rates. The rate refers to
events per user, with 1K users
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Figure 3.13: Latencies (in 95% percentile) with increasing generation rates. The rate refers to
events per user, with 1K users

3.3 C-T4: Increasing Data Generation Rates

This task evaluates the performance of the system with increasing streaming rates. We consider
10 compliance checkers running in parallel in order to try to cope with the biggest rates in the
defined tasks.

Figure 3.12 represents the median and average latencies (in milliseconds and logarithm
scale), while the latency at 95% percentile is shown in Figure 3.13 (in logarithm scale). Several
comments are in order. First, note that the median values in Figure 3.12 are consistent with our
previous latency measures (Sections 2.1 and 3.1), obtaining values between 1-2ms for rates up
to 1 ev/s (per user). Then, as expected, the median latency increases up to several seconds at the
highest rate of 1 ev/100ms per user, that is, the system receives a total of 1 ev/0.1ms.

The huge skewed distribution for the highest rate is revealed by the 95% percentile shown
in Figure 3.13. Note that we fix the benchmark time at 20 minutes, so more events are generated
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CPU usage (in %) by the compliance checker with increasing rates (per user)
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Figure 3.14: CPU usage (in %) for compliance checking with increasing generation rate (1K
users)

Table 3.1: Space requirements (MB) with increasing generation rate.

#Users Event Rate (per user) #Events Disk Space (MB)

1,000 1 ev./60s 20,000 819
1,000 1 ev./30s 40,000 1,563
1,000 1 ev./10s 120,000 1,954
1,000 Lev/ls 1,200,000 5,355
1,000 1 ev./100ms 12,000,000 59,664

with increasing generation rates. Results shows that, the latency reaches a stable stage for rates
up to 1 ev/ls per user, i.e. a total of 1 ev/lms. In contrast, the latency at 95% percentile
grows steadily for streams at 1 ev/100ms per user. This fact shows that the current installation
cannot cope with such high rates and new events have to queue until they can be processed. The
maximum latency reaches 17 minutes for 12 million events.

Finally, in this case, we also inspect the CPU usage and the overall disk space of the so-
lution. The CPU usage (in percentage) is represented in Figure 3.14. As expected, the results
show that the CPU usage increases (but sublinearly) with the generation ratio. The disk space
requirements are given in Table 3.1. It is worth mentioning that the disk space depends on mul-
tiple factors, such as the individual size of the randomly generated events, the aforementioned
level of replication, the number of nodes and the level of logging/monitoring in the system. The
reported results already show the log compaction feature of Kafka as, on average, less bytes are
required to represent each of the events with increasing event rates.

3.4 C-T5: Batch Performance

Recall that this task considers a batch processing scenario, i.e. events are already loaded in
the system, with increasing number of events and users. In this evaluation, we consider the
first three subtasks, testing up to 10 million events! (considering 100K events per user). We

"Note that the system is able to generate and process an arbitrary number of events in batch. Further results can
be found in our companion website.
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Figure 3.15: Total batch compliance checking throughput (in events/s) with increasing number
of compliance checkers
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Figure 3.16: Distribution of batch compliance checking throughput (in events/s) with different
users and work load. We consider 1000 events per user

inspect the provided throughput (processed events per seconds) using an increasing number of
compliance checkers. As in previous cases, we here consider 10 compliance checkers running
in parallel.

Figure 3.15 shows the total batch throughput (in events/s) for 100K, 1M and 10M events.
The total throughput increases with the number of events, being over 474 processed events/s in
all cases, with a maximum of 3,489 events/s in the case of 10M events.

Finally, Figure 3.16 looks at the distribution of the throughput for the case of 1M and 10M
events. Both cases shows similar initial figures, with increased performance around 4M events.
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Chapter 4

Compliance Checking

This section is devoted to the evaluation of SPECIAL’s compliance checker, called PLReasoner,
in terms of performance and scalability. This engine is compared with the general engine Hermit
for OWL2-DL.

SPECIAL’s engine is tested on two randomly generated sets of inputs. The first set is based
on the actual knowledge base and policies developed for Proximus and Thomson Reuters. Con-
sent policies are generated by modifying the business policies, mimicking a selection of privacy
options from a list provided by the controller. This first set of test cases is meant to assess the
performance of the engines in the application scenarios that we expect to arise more frequently
in practice. The second set of experiments, that makes use of larger knowledge bases and poli-
cies, is meant to predict the behaviour of the engines in more complex scenarios, should they
arise in the future.

The next section provides more details on test case generation. Then we briefly describe
the implementation of SPECIAL’s reasoner and its optimisations. The third section reports the
experimental results.

1 Test case generation

The first set of test cases is derived from the business policies for Proximus and Thomson
Reuters. In each compliance check SubClass0f(Pg, Pc), Pp is a union of simple business
policies randomly selected from those occurring in the pilots’ policies (as if such simple poli-
cies were randomly associated to the business processes that trigger the compliance checks).
The consent policies P¢ are the union of simple policies randomly selected from the pilots, that
are randomly perturbed by replacing some vocabulary terms with a different term. The modified
terms simulate the opt-in/opt-out choices of the data subject in the following sense: if the term
in P¢ is a superclass (resp. a subclass) of the corresponding term in the original business policy,
then the data subject opted for a broader (resp. more restrictive) usage option. In this set of ex-
periments, the knowledge base is essentially the union of the ontologies reported in deliverable
D2.5.

In the second set of experiments, both the ontologies and the policies are generated ran-
domly, in order to set up a stress test where the increasing size of policies and ontologies allows
to verify the scalability of SPECIAL’s reasoner and Hermit. Five ontologies of increasing size
are generated, using the following parameters:
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Ontology ‘ classes ‘ object prop. | data prop. | max children | classification height

OP1 5 5 10 2 5
opP2 50 50 20 6 10
OP3 500 500 30 10 15
OP4 5000 5000 40 14 20
OP5 50000 50000 50 18 25

The column named “max children” sets the maximum number of direct subclasses that a class
may have, while “classification height” is the maximum length of the chains of subclasses
Ay, As, ... A, such that A; © A;4q is in the ontology (i = 1,2,...,n — 1). Note that the
ontologies for SPECIAL’s policy language and vocabularies, illustrated in D2.2, lie between
OP1 and OP2. Policies have been generated with the following parameters:

’ Policy ‘ classes ‘ obj. prop. | data prop. ‘ interval range ‘ nesting ‘ conj. ‘ disj. ‘
CP1 5 5 10 [1,365] 4 10 10
CP2 50 50 20 [1,365] 9 20 100

Each row corresponds to a class of generated policies (100 in CP1 and 1000 in CP2). The
second, third, and fourth columns specify how many simbols of each sort are used in the poli-
cies. “Interval range” specifies the values from which interval endpoints are selected. The next
column specifies the maximum nesting level of object properties. The last two columns specify
the maximum number of concepts that &.# & and 0% ¢’ may contain, respectively. In partic-
ular, note that each policy in CP2 may contain up to 100 simple policies. Moreover, an ex-post
inspection of the generated policies shows that the number of interval constraints per simple
policies (that cause the hardness of reasoning in PL, as proved in [4]) grows up to 14. So the
complexity of the subsumption tests over CP2’s policies is significantly harder than those arising
in the pilots, as required.

2 The implementation of SPECIAL’s engine

SPECIAL’s compliance engine, called PLReasoner, is implemented in Java and it is distributed
as a .jar file. PLReasoner supports the standard OWL APIs. The package includes both the
implementation of the structural subsumption algorithm STS, and the preliminary normalisation
phases, based on the 7 rewrite rules and on the interval splitting method for interval safety
illustrated in D2.4.

Several optimisations have been tried and assessed:

1. Two caches for keeping normalised concepts and interval safe queries, respectively. Their
purpose is reducing the overhead of the two normalisation phases, by re-using already
normalised concepts and queries when possible.

2. A third cache that remembers the pairs of classes that have been found to be disjoint. Its
purpose is reducing the cost of knowledge base inspection.

3. Pre-computation of normalisation for all policies. When this is possible (see the discus-
sion at the end of this chapter), then run-time reasoning collapses to the calls to STS,
which is typically much faster than normalisation.
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3 Performance analysis

The experiments have been run on a server with an 8-cores processor Intel Xeon Silver 4110,
11M cache, 32GB, running Ubuntu 18.04 and JVM 1.8.0_181. PLReasoner has been compared
with Hermit 1.3.8.510. We tried a comparison with Pellet, too, but when the randomly generated
policies contained empty intervals, then Pellet stopped with a parsing error, instead of treating
the expression as an empty class.

When the engine is started, it loads the specified ontology and classifies it (i.e., it finds all the
implicit subclass relationships implied by the axioms). We start with a comparison of PLRea-
soner and Hermit in this initial phase (before compliance checking is started). The following
results apply to all versions of PLReasoner, since optimisations apply only after classification:

Loading & Classification times for PLReasoner
Ontology ‘ time (ms) ‘ time ratio PLReasoner/Hermit
Pilots 47 21%
OP1 28 15%
OP2 41 22%
OP3 79 30%
OP4 328 52%
OP5 2087 1%

Now we illustrate the performance results for the experiments based on the pilots. On this
test set, the performance of PLReasoner without optimisations is worse than Hermit’s. Things
change if the caches for normalised expressions are used, and further improve if also the cache
for disjoint concepts is applied, too. Here we report the results for the latter configuration:

Test set TR PROXIMUS
Reasoner PLReasoner Hermit PLReasoner Hermit
with 3 caches with 3 caches
# checks 9999 12000
tot. time (ms) 8605 46039 (+435%) 8470 43984 (+419%)
avg. memory (MB) 613 766 (+25%) 585 767 (+31%)
avg. time for 1 check (ms) 0.86 3.96 0.71 3.67

We will show later that precomputation of normalisation further improves performance.

The stress test — i.e. the second set of experiments, with increasingly large ontologies and
policies — shows the advantages of PLReasoner in all of its versions. In the next table, PLR
stands for PLReasoner with no optimisation. The table shows the behaviour of the two engines
on small policies as the knowledge base grows. All times are in milliseconds.
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Policy class CP1

Ontology OP1 OoP2 OP3 OP4 OP5

Reasoner PLR | Hermit | PLR | Hermit PLR Hermit | PLR | Hermit | PLR Hermit

# checks 8400

tot. time 3646 | 21584 | 5873 | 24929 | 21585 | 52892 | 8347 | 377836 | 7747 | 4952136
(ms) +492% +324% +145% +4426% +52206%

avg. mem 154 768 614 768 614 768 614 922 461 768
(MB) +399% +25% +25% +50% +67%

avg. time 0.43 2.57 0.70 297 2.57 6.30 0.99 44.98 0.92 589.54

per check

Clearly, Hermit’s general algorithm quickly slows down as the size of the ontology increases.
The non-linear behaviour of PLReasoner is due to the non-uniform structure of the random
ontologies, and in particular the number and placement of their disjointness axioms. We are
planning more experiments with a larger variety of ontologies, to address this issue, but it is not
possible to include them in this deliverable, since large scale experiments (including Hermit)
take months to be completed.

The effectiveness of optimisations is illustrated in the next table. We adopt the following
notation:

* PLR: PLReasoner with no optimisations;

* PLR 2c¢: PLReasoner optimised with 2 caches for normalised concepts and interval-safe
queries, respectively;

* PLR 3c: PLReasoner optimised with 3 caches: two as in PLR 2c and one for disjoint
terms;

* PLR pre: all normalisations are pre-computed (given all the policies) and the two caches
of PLR 2c are filled in with the results of normalisation before starting the compliance
checks. The response times reported are those for the subsequent run-time checks (that
involve only STS).

The cells of the next table contain for each test set but those involving CP2 (discussed later) the
total time and the average time per compliance check (between parentheses).

Reasoner | PLR | PLR2c | PLR3c | PLRpre |
TR 137997 (13.80) | 44644 (4.46) | 8605 (0.86) | 1874 (0.19)
Proximus | 177283 (14.77) | 53776 (4.48) | 8470 (0.71) | 1849 (0.15)
CPI - OPI 3646 (0.43) | 180 (0.02) | 148(0.02) | 22(0.00)
CP1 - OP2 5873(0.70) | 732(0.09) | 740 (0.09) | 333 (0.04)
CP1-OP3 | 21586(2.57) | 573(0.07) | 222(0.03) | 93(0.01)
CP1 - OP4 8347 (0.99) | 856 (0.10) | 1053 (0.13) | 422 (0.05)
CPI - OP5 7747(0.92) | 703 (0.08) | 717 (0.09) | 416 (0.05)

The first observation is that the cache for disjoint concepts is effective on the pilot-based test sets
but not on the random test sets. This phenomenon is probably a consequence of the low number
of disjointness axioms contained in the random ontologies O1-05, that make the operations on
the third cache a useless overhead. The number of disjointness axioms has been kept small in
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order to get a better balance between compliance and non-compliance results over the random
policies, and in order to limit the number of inconsistent policies.

The second observation is that — as it could be expected — the precomputation of normalised
concepts significantly decreases response time during compliance checking. This optimisation,
when applicable, is by far the most effective in terms of scalability. Its memory requirements
are reasonable: in our test sets the average storage needs are always less than 600 MB.

Concerning the prerequisites for precomputation, all business policies can be easily nor-
malised in advance with the seven rewrite rules illustrated in D2.4, since the inputs of this trans-
formation procedure (i.e. the ontology and the business policies themselves) are relatively stable
and known a priori. The crucial part is predicting the intervals occurring in the consent policies,
that determine how the intervals in the business policies are to be split. If they are completely
undetermined, then interval splitting cannot be precomputed. The resulting performance can be
reasonably expected to lie between the response times of PLR 2¢ and PLR pre (since at least
the 7 rewrite rules are applied in advance, while interval splitting is executed during compliance
checks).

If, however, the options for the data subjects provide a limited set of durations, established
by the controller, then the set of intervals that may occur in the consent policies is known in
advance and full precompilation is possible.

In any case, PLReasoner addresses the need of some pilot leaders for real-time compliance
checking. On TR’s and Proximus’ test sets, both “PLR 3c¢” and “PLR pre” can process a sin-
gle compliance check in less than a millisecond. By processing multiple compliance checks in
parallel, it should be easy to process a compliance check in a few tens of microseconds. Paral-
lelization, in this scenario, involves minimal synchronisation overhead because each compliance
check is independent from the others; just distributing the compliance checks over ~10 proces-
sors should speed up response times by approximately one order of magnitude. Another option
is the direct compilation of the engine on object code interpretable by hardware (as opposed
to Java bytecode). Java provides such compilation facilities; alternatively, one may consider
re-engineering the system with a different language, such as C++. The drawback of the latter
approach is that currently there are not any analogues of the OWL APIs for C++, in terms of
functionality and adoption.

We are left to illustrate the behaviour of the engines as policies become more complex. We
do this by running PLR (PLReasoner without optimisations) and Hermit on ontology OP1 and
on the class of policies CP2. Recall that the policies in CP2 are one order of magnitude larger
than those in CP1. As a consequence, also the number c of interval constraints per simple policy
may reach higher values. The complexity analysis of PLReasoner tells us that interval splitting
may inflate business policies exponentially as ¢ grows. The theory tells us also that this is in-
evitable (unless P=NP) since general subsumption in PL is coNP-hard. The graph in Figure 4.1
shows the performance of PLR and Hermit as max ¢ grows, where max c is the maximum num-
ber of intervals occurring in a simple policy. The same data are plotted in Figure 4.2 to highlight
the relative speed of the two engines.

PLR significantly outperforms Hermit until max c reaches 8. Then the probability of trig-
gering the combinatorial explosion becomes high enough to generate concepts with 1,814,400
disjuncts (max ¢ = 8) and 2,156,544 disjuncts (max ¢ = 8). When max ¢ = 10, some policies
have over 10M disjuncts; PLR’s normalisation goes out of memory in 22% of these test cases.
Recall, however, that SPECIAL’s policies have by definition maxc < 1.

Figure 4.3 shows the performance of the optimised versions “PLR 2¢” and “PLR pre” of
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Figure 4.1: Relative performance PLR/Hermit on larger policies
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Figure 4.2: Relative performance PLR/Hermit on larger policies
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Figure 4.3: Effectiveness of optimisations on larger policies
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PLReasoner, for maxc = 1,...,7.! The experiments confirm the effectiveness of these two
optimisations. The numeric details are reported in the following tables:
Avg. time per query (ms)
business consent
maxc policies policies PLR PLR 2c PLR pre Hermit
0 4 700 11.721 2.890 0.004 75.055
1 2 700 13.711 5.831 0.049 73.714
2 1 700 12.961 11.770 0.033 73.054
4 4 700 13.006 4122 1.074 71.013
5 6 700 26.180 13.578 9.759 79.389
6 2 700 25765 12.019 0.089 92.172
7 1 700 17.183 14.074 1.826 77.129
Max memory usage (MB)
business consent
max ¢ policies policies PLR PLR 2¢ PLR pre Hermit
0 4 700 614 461 614 614
1 2 700 614 614 461 614
2 1 700 614 614 768 614
4 4 700 461 461 614 614
5 6 700 768 614 614 768
6 2 700 461 614 614 614
7 1 700 461 461 768 614
Note the remarkable efficiency of PLR pre.
'PLR 3c is not interesting in this set of experiments, given the negligible size of the ontology OP1.
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Chapter 5

Conclusions

This deliverable presents the methodology that guides the scalability and robustness tests of
the SPECIAL platform. First, we set up the scenario and discuss some of the non-functional
desiderata. Then, we describe our benchmark for transparency and compliance, referred to as
STC-bench, which (i) is designed on the basis of well-identified choke points (challenges) that
would affect the performance of the SPECIAL platform and similar systems, (ii) provides a syn-
thetic data generator that generates SPECIAL policies and data processing and sharing events,
and (iii) describes key performance indicators and well-defined transparency and compliance
tasks. We expect that STC-bench can become a valuable asset beyond SPECIAL for those
tools aimed at GDPR-based transparency and compliance.

Then, we provide an evaluation of the third release of the SPECIAL platform on compliance
tasks and an infrastructure consisting of a cluster of 10 nodes (each of them with 8 cores, 16GB
memory and 100GB disk space per node).

Our evaluation focuses on illustrating the use of STC-bench and identifying spots for
optimisation of our platform. In particular, our results show that:

* The SPECIAL platform scales (sublinearly) with the number of compliance checkers run-
ning in parallel (see Section 2.1), both in a streaming and a batch scenario. Although these
results are promising, further work is needed to inspect and optimise the usage of multiple
checkers.

* The system in place is able to serve a 95% percentile latency of 1-2ms with an event
stream of 1 event every 1ms, which can cover a wide range of real-world scenarios.

* The system presents non-negligible delays (several seconds) when the event generation
rate is faster than 1 event every 1ms. We expect to cover this scenario following two
complementary strategies: (i) adding computational resources to the cluster, which will
increase the number of partitions and thus compliance checkers, (ii) optimising the inte-
gration of our tailored reasoner, PLReasoner (discussed below).

* The performance is marginally affected by the increasing complexity of the policies, i.e.
where user consent can consist of several union policies.

* The system scales with increasing number of users, but the increased generation ratio can
affect negatively the latency as mentioned above.
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* The system is able to perform compliance checking in batch mode, obtaining (median)
throughputs of up to 3,489 events per second.

These results show several improvements with respect to the previous version of this deliv-
erable. Thus, the third release of the platform significantly improves on compliance checking
latency (from a previous latency of 100ms in a stream of lev/10ms to 1-2ms in a stream of
lev/1ms in the latest version) as well as memory management (from 10 to 2 GB) and more
stable CPU usage.

Finally, we provide an in-depth evaluation of PLReasoner — i.e. SPECIAL’s engine tailored
to the fragment of OWL?2 used for business policies consent policies and the GDPR, using test
cases derived from the business policies for Proximus and Thomson Reuters. The PLReasoner
compares favorably with Hermit. In particular:

* Ontology classification time, compliance checking time, and memory consumption are all
significantly reduced.

* On pilot-derived tests, the PLReasoner is more than 4 times faster than Hermit, even
without pre-computing the normalisation phase. The average time per compliance check
is well below a millisecond.

* If normalisation is precomputed, then each compliance check takes less than 200 -
seconds and gets close to the real-time needs of some pilot leaders.

* The differences between Hermit and the PLReasoner are even wider as the size of the
knowledge base grows. The stress tests carried out in the second set of experiments show
that, as the ontology gets larger, the PLReasoner can be up to 5 orders of magnitude faster.

 Similarly, as policies get larger, the PLReasoner is significantly faster than Hermit. When
the maximum number of intervals per simple policy is below 9, the PLReasoner without
precomputation is up to 26 times faster than Hermit. With precomputation, the PLreasoner
becomes 5 orders of magnitude faster than Hermit. Beyond 8 intervals per simple policy
the intrinsic intractability of PL subsumption shows its effects and Hermit becomes more
efficient. This is due to the cost of interval splitting, needed to guarantee interval safety.
Recall, however, that SPECIAL’s policies have at most one interval per simple policy.
This guarantees that after interval splitting business policies grow at most linearly in the
size of the given consent policy.

Overall, we expect that these insights can guide our future research and development steps of the
SPECIAL platform. In particular, current results lead us to further investigate on the optimised
use of PLReasoner within the SPECIAL platform and to solve or mitigate potential latency
peaks and bottlenecks to improve the scalability of the system.
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